struct reactor_t {
int epoll_fd;
int event_fd;
std::mutex* list_mutex;
list_t* invalidation_list; // reactor objects that have been unregistered.
pthread_t run_thread; // the pthread on which reactor_run is executing.
bool is_running; // indicates whether |run_thread| is valid.
bool object_removed;
};
struct reactor_object_t {
int fd; // the file descriptor to monitor for events.
void* context; // a context that's passed back to the *_ready functions.
reactor_t* reactor; // the reactor instance this object is registered with.
std::mutex* mutex; // protects the lifetime of this object and all variables.
void (*read_ready)(void* context); // function to call when the file
// descriptor becomes readable.
void (*write_ready)(void* context); // function to call when the file
// descriptor becomes writeable.
};
void reactor_unregister(reactor_object_t* obj) {
CHECK(obj != NULL);
reactor_t* reactor = obj->reactor;
if (epoll_ctl(reactor->epoll_fd, EPOLL_CTL_DEL, obj->fd, NULL) == -1)
LOG_ERROR("%s unable to unregister fd %d from epoll set: %s", __func__,
obj->fd, strerror(errno));
if (reactor->is_running &&
pthread_equal(pthread_self(), reactor->run_thread)) {
reactor->object_removed = true;
return;
}
{
std::unique_lock<std::mutex> lock(*reactor->list_mutex);
list_append(reactor->invalidation_list, obj);
}
// Taking the object lock here makes sure a callback for |obj| isn't
// currently executing. The reactor thread must then either be before
// the callbacks or after. If after, we know that the object won't be
// referenced because it has been taken out of the epoll set. If before,
// it won't be referenced because the reactor thread will check the
// invalidation_list and find it in there. So by taking this lock, we
// are waiting until the reactor thread drops all references to |obj|.
// One the wait completes, we can unlock and destroy |obj| safely.
obj->mutex->lock();
obj->mutex->unlock();
delete obj->mutex;
osi_free(obj);
}