嵌入模型和大型语言模型的区别

嵌入模型和大型语言模型在自然语言处理(NLP)和机器学习中扮演着不同的角色:

  1. 嵌入模型

    • 目的:将单词、短语或句子表示为数值向量,这些向量能够捕捉到语义和句法信息。
    • 功能:将文本数据映射到一个连续的向量空间中,在这个空间中向量之间的接近程度反映了它们对应的文本项目的相似度。
    • 示例:Word2Vec、GloVe、FastText。
  2. 大型语言模型

    • 目的:生成类似人类的文字,理解上下文,并执行各种自然语言处理任务,如翻译、摘要、问答等。
    • 功能:使用深度学习架构,如变换器(transformers),基于广泛的训练数据集来处理和生成文本。
    • 示例:GPT-3、BERT、T5。

简而言之,嵌入模型专注于创建有意义的文本表示,而大型语言模型则利用这些表示(以及其他技术)来理解和生成文本。

相关推荐
AI-小柒3 小时前
从零入门大语言模型(LLM):系统学习路线与实践指南
大数据·开发语言·人工智能·学习·信息可视化·语言模型·自然语言处理
renhongxia17 小时前
数字孪生国内外发展现状,数字孪生技术在工程项目上的应用情况及效益分析
人工智能·深度学习·机器学习·语言模型·制造
beginner.zs9 小时前
OpenCode IDE 全面介绍与实战使用指南
ide·语言模型·编辑器
java1234_小锋10 小时前
【AI大模型面试题】在训练超大规模语言模型(如千亿参数级别)时,除了显存限制,最主要的训练挑战是什么?
人工智能·语言模型·自然语言处理
cskywit11 小时前
[Nature 2026]AFLoc:一种用于通用无标注病理局部定位的多模态视觉‑语言模型
人工智能·深度学习·语言模型
KG_LLM图谱增强大模型11 小时前
CoDe-KG:利用大语言模型和句子复杂度建模的自动化知识图谱构建
语言模型·自动化·知识图谱
童话名剑11 小时前
RNN类型、语言模型与新序列采样(吴恩达深度学习笔记)
rnn·深度学习·语言模型·rnn结构类型·新序列采样
2501_9481201512 小时前
中职动漫设计与制作专业实训方案研究
前端·人工智能·语言模型·自然语言处理·架构
寻道码路12 小时前
【GitHub周榜】Agno:快速构建多模态智能体的轻量级框架,开发提速 10000 倍
人工智能·语言模型·开源·github·aigc·ai编程
bleuesprit1 天前
LLM语言模型Lora微调
人工智能·语言模型·lora