嵌入模型和大型语言模型的区别

嵌入模型和大型语言模型在自然语言处理(NLP)和机器学习中扮演着不同的角色:

  1. 嵌入模型

    • 目的:将单词、短语或句子表示为数值向量,这些向量能够捕捉到语义和句法信息。
    • 功能:将文本数据映射到一个连续的向量空间中,在这个空间中向量之间的接近程度反映了它们对应的文本项目的相似度。
    • 示例:Word2Vec、GloVe、FastText。
  2. 大型语言模型

    • 目的:生成类似人类的文字,理解上下文,并执行各种自然语言处理任务,如翻译、摘要、问答等。
    • 功能:使用深度学习架构,如变换器(transformers),基于广泛的训练数据集来处理和生成文本。
    • 示例:GPT-3、BERT、T5。

简而言之,嵌入模型专注于创建有意义的文本表示,而大型语言模型则利用这些表示(以及其他技术)来理解和生成文本。

相关推荐
LeeZhao@17 小时前
【具身智能】具身机器人VLA算法入门及实战(一):具身智能系统及VLA
人工智能·docker·语言模型·机器人
MasonYyp20 小时前
简单使用Marker
python·语言模型
人机与认知实验室20 小时前
触摸大语言模型的边界
人工智能·深度学习·机器学习·语言模型·自然语言处理
西西弗Sisyphus20 小时前
一个基于稀疏混合专家模型(Sparse Mixture of Experts, Sparse MoE) 的 Transformer 语言模型
语言模型·transformer·moe
喜欢吃豆21 小时前
一份关于语言模型对齐的技术论述:从基于PPO的RLHF到直接偏好优化
人工智能·语言模型·自然语言处理·大模型·强化学习
聚梦小课堂1 天前
用于大语言模型后训练阶段的新方法GVPO(Group Variance Policy Optimization)
人工智能·语言模型·后训练
DisonTangor1 天前
Lumina-DiMOO:用于多模态生成与理解的全扩散大语言模型
人工智能·语言模型·自然语言处理·ai作画·aigc
强哥之神2 天前
浅谈目前主流的LLM软件技术栈:Kubernetes + Ray + PyTorch + vLLM 的协同架构
人工智能·语言模型·自然语言处理·transformer·openai·ray
闲看云起2 天前
Bert:从“读不懂上下文”的AI,到真正理解语言
论文阅读·人工智能·深度学习·语言模型·自然语言处理·bert
nueroamazing2 天前
PPT-EA:PPT自动生成器
vue.js·python·语言模型·flask·大模型·项目·ppt