嵌入模型和大型语言模型的区别

嵌入模型和大型语言模型在自然语言处理(NLP)和机器学习中扮演着不同的角色:

  1. 嵌入模型

    • 目的:将单词、短语或句子表示为数值向量,这些向量能够捕捉到语义和句法信息。
    • 功能:将文本数据映射到一个连续的向量空间中,在这个空间中向量之间的接近程度反映了它们对应的文本项目的相似度。
    • 示例:Word2Vec、GloVe、FastText。
  2. 大型语言模型

    • 目的:生成类似人类的文字,理解上下文,并执行各种自然语言处理任务,如翻译、摘要、问答等。
    • 功能:使用深度学习架构,如变换器(transformers),基于广泛的训练数据集来处理和生成文本。
    • 示例:GPT-3、BERT、T5。

简而言之,嵌入模型专注于创建有意义的文本表示,而大型语言模型则利用这些表示(以及其他技术)来理解和生成文本。

相关推荐
娃乐呵1 小时前
免费的大批量Excel文档大模型处理数据工具
语言模型·大模型·excel·数据处理
xwz小王子2 小时前
IROS 2025论文分享:基于大语言模型与行为树的人机交互学习实现自适应机器人操作
学习·语言模型·人机交互
阿杰学AI5 小时前
AI核心知识65——大语言模型之Vibe Coding (简洁且通俗易懂版)
人工智能·ai·语言模型·aigc·ai编程·vibe coding·ai coding
阿杰学AI5 小时前
AI核心知识64——大语言模型之RLVR (简洁且通俗易懂版)
人工智能·ai·语言模型·自然语言处理·aigc·rlvr·基于可验证奖励的强化学习
java1234_小锋7 小时前
Transformer 大语言模型(LLM)基石 - 输出层(Output Layer)详解以及算法实现
深度学习·语言模型·transformer
前端程序猿之路8 小时前
简易版AI知识助手项目 - 构建个人文档智能问答系统
前端·人工智能·python·ai·语言模型·deepseek·rag agent
LDG_AGI9 小时前
【推荐系统】深度学习训练框架(二十):Meta Device — 延迟初始化,零显存定义超大规模模型
人工智能·pytorch·分布式·深度学习·机器学习·语言模型
软件测试小仙女9 小时前
认真测试大语言模型(LLM)
软件测试·人工智能·测试工具·ai·语言模型·自然语言处理·llm
小陈phd9 小时前
大语言模型实战(六)——面向目标架构案例之FunctionCall技巧介绍
人工智能·语言模型·架构
会飞的小新9 小时前
从 LLM 到 ReACT Agent:推理与行动协同的智能体框架深度解析
人工智能·语言模型