24/8/9算法笔记 决策树VS线性回归

复制代码
from sklearn.tree import DecisionTreeRegressor

from sklearn.linear_model import LinearRegression

from sklearn import datasets

from sklearn.model_selection import train_test_split
import numpy as np

X,y = datasets.load_diabetes(return_X_y=True)#糖尿病数据
X_train,X_test,y_train,y_test = train_test_split(X,y)

model = LinearRegression()
model.fit(X_train,y_train)
#上面得分更高,训练数据
#数据量足够大,一定是上面得分更加高
print('训练数据得分',model.score(X_train,y_train))
print('测试数据得分',model.score(X_test,y_test))
复制代码
import matplotlib.pyplot as plt
plt.rcParams['font.family'] ='Fangsong'
plt.figure(figsize = (12,6))
max_depth = np.arange(1,16)
score=[]
score2=[]
for d in max_depth:
    model = DecisionTreeRegressor(max_depth=d)
    model.fit(X_train,y_train)
    score2.append(model.score(X_train,y_train))
    s = model.score(X_test,y_test)
    score.append(s)
    
plt.plot(max_depth,score2,'g*-')#绿色的线是训练数据,随着树深度的增加得分变化
plt.plot(max_depth,score,'ro-')#'红色的是测试数据随深度的增加
plt.xlabel('树最大深度',fontsize = 18)
plt.ylabel('Score',fontsize = 18)
plt.title('决策树得分随着树深度变化',fontsize = 18)
plt.legend(['训练数据的得分','测试数据的得分'],fontsize=18)
print('最高分数',max(score))

决策树和线性回归是两种常用的机器学习算法,它们在很多方面有所不同:

  1. 模型类型

    • 决策树:是一种非参数的监督学习算法,用于分类和回归任务。它通过学习简单的决策规则从数据特征中推断出目标值。
    • 线性回归:是一种参数的监督学习算法,仅用于回归任务。它假设输入特征和输出变量之间存在线性关系。
  2. 处理数据的能力

    • 决策树可以处理数值和类别数据,而且不需要假设数据的分布。
    • 线性回归通常假设数据符合正态分布,并且主要处理数值数据。
  3. 模型解释性

    • 决策树模型易于理解和解释,可以可视化地展示决策过程。
    • 线性回归模型的解释性也很好,因为它基于权重系数来表示特征对预测结果的影响。
  4. 对非线性问题的处理

    • 决策树能够很好地处理非线性问题,因为它通过分割数据空间来捕捉复杂的模式。
    • 线性回归在处理非线性问题时表现不佳,因为它仅适用于线性关系。
  5. 过拟合风险

    • 决策树容易过拟合,尤其是当树变得非常深和复杂时。需要使用剪枝等技术来控制模型复杂度。
    • 线性回归通常不容易过拟合,除非特征数量接近或超过样本数量。
  6. 模型复杂度

    • 决策树的复杂度可以通过树的深度和叶子节点的数量来衡量。
    • 线性回归的复杂度通常较低,因为它只涉及特征的线性组合。
  7. 训练速度

    • 决策树通常训练速度较快,尤其是在使用像 CART 这样的算法时。
    • 线性回归的训练速度通常非常快,因为它只涉及解决一个优化问题。
  8. 预测速度

    • 决策树的预测速度通常较快,因为只需要进行一系列的比较操作。
    • 线性回归的预测速度也很快,因为它只涉及计算一个线性组合。
  9. 多输出问题

    • 决策树可以很容易地扩展到多输出问题,尽管需要对每个输出单独建模。
    • 线性回归也可以处理多输出问题,但每个输出需要一个独立的模型。
  10. 特征选择

    • 决策树在构建过程中可以进行特征选择,自动选择最有信息量的特征进行分裂。
    • 线性回归通常需要预先进行特征选择,以避免模型性能下降。
相关推荐
兮山与17 分钟前
算法3.0
算法
不会调制解调的猫33 分钟前
笔记 | 内网服务器通过wifi穿透,设置流量走向
运维·服务器·笔记
爱编程的化学家35 分钟前
代码随想录算法训练营第27天 -- 动态规划1 || 509.斐波那契数列 / 70.爬楼梯 / 746.使用最小花费爬楼梯
数据结构·c++·算法·leetcode·动态规划·代码随想录
CoovallyAIHub1 小时前
告别等待!十条高效PyTorch数据增强流水线,让你的GPU不再"饥饿"
深度学习·算法·计算机视觉
海琴烟Sunshine1 小时前
leetcode 66.加一 python
python·算法·leetcode
rengang662 小时前
09-随机森林:介绍集成学习中通过多决策树提升性能的算法
人工智能·算法·随机森林·机器学习·集成学习
程序员大雄学编程2 小时前
「机器学习笔记7」决策树学习:从理论到实践的全面解析(上)
笔记·决策树·机器学习
CoovallyAIHub2 小时前
量子计算迎来诺奖时刻!谷歌赢麻了
深度学习·算法·计算机视觉
法拉第第2 小时前
caffine概率统计算法之Count-Min Sketch
算法