19.7%年化的大小盘轮动——策略如何调优 | Deap因子挖掘系统重构(附python代码)

原创文章第619篇,专注"AI量化投资、世界运行的规律、个人成长与财富自由"。

咱们有了策略向导,写策略就特别快了。

今天来复现的策略是一个经典的------大小盘趋势轮动策略

沪深300代表的大盘与创业板代表的小盘之间,按动量来轮动。

直接信号轮动的效果:

过滤掉负的动量:

动量小于零的时候,平仓,收益率和最大回撤均得到改善。

再优化进场信号------在动量大于0.02的时候才进场,为负的时候离场:

年化进一步提升至19.7%,这样一个策略就完成了。

我们发布到服务器:

这些代表在本周五都会在星球更新:

AI量化实验室------2024量化投资的星辰大海

本周一个任务主线是 ------重构Deap因子挖掘系统。

商品期货池:我们从国内期货市场筛选出历史流动性较好的41个品种具体如下表所示。

41个商品期货主连合约,我整理到咱们平台上了:

然后直接做单因子分析,用动量先看看:

单调性很好------但是是动量越大,收益越小

看下分层收益:

IC上也得到印证------期货截面20日动量与收益率呈现负相关,因此我们只需要设计一个策略,买入动量最小的,卖空动量最大的即可:

回测区间:我们使用2016/1/1-2022/1/1作为样本内训练集,2022/1/2-2023/3/10作为样本外测试集,总回测区间为2016/1/1-2023/3/10。

算子函数集------也就是咱们的因子表达式引擎里提供的,这里才是因子挖掘的核心------因为无论是deap还是gplearn,框架本身你会使用就可以了。

这些函数的实现在这里:

代码都不复杂:

复制代码
import numpy as np
import pandas as pd
from .expr_utils import calc_by_symbol, calc_by_date


@calc_by_symbol
def ts_delay(se: pd.Series, periods=5):  # 滞后N天的序列
    return se.shift(periods=periods)


@calc_by_symbol
def ts_delta(se: pd.Series, periods=20):  # 当前序列与滞后N天之差
    se_result = se - se.shift(periods=periods)
    return se_result


@calc_by_symbol
def ts_mean(se: pd.Series, d):
    return se.rolling(window=d).mean()


@calc_by_symbol
def ts_median(se: pd.Series, d):
    return se.rolling(window=d).median()


@calc_by_symbol
def ts_min(se: pd.Series, periods=5):
    return se.rolling(window=periods).min()


@calc_by_symbol
def ts_max(se: pd.Series, periods=5):
    return se.rolling(window=periods).max()


@calc_by_symbol
def ts_sum(se: pd.Series, N):
    ret = se.rolling(N).sum()
    return ret


@calc_by_symbol
def ts_argmin(se: pd.Series, periods=5):
    return se.rolling(periods, min_periods=2).apply(lambda x: x.argmin())


@calc_by_symbol
def ts_argmax(se: pd.Series, periods=5):
    return se.rolling(periods, min_periods=2).apply(lambda x: x.argmax())


@calc_by_symbol
def stddev(se, periods=5):
    return se.rolling(window=periods).std()


@calc_by_symbol
def ts_rank(se: pd.Series, periods=9):
    ret = se.rolling(window=periods).rank(pct=True)
    return ret


@calc_by_symbol
def shift(se: pd.Series, N):
    return se.shift(N)


@calc_by_symbol
def roc(se: pd.Series, N):
    return se / shift(se, N) - 1


@calc_by_symbol
def ts_product(se: pd.Series, d):
    return se.rolling(window=d).apply(np.product)


@calc_by_symbol
def zscore(se: pd.Series, N):
    def _zscore(x):

        try:
            x.dropna(inplace=True)
            # print('sub', x)
            value = (x[-1] - x.mean()) / x.std()
            if value:
                return value
        except:
            return -1

    # print(se)
    ret = se.rolling(window=N).apply(lambda x: _zscore(x))
    return ret


def decay_linear(series, window):
    """
    对输入的时间序列进行线性衰减。

    :param series: 输入的时间序列。
    :param window: 衰减的窗口大小。
    :return: 衰减后的序列。
    """
    weights = np.arange(1, window + 1)
    decay = np.convolve(series, weights, 'valid') / np.sum(weights)
    return decay

绝大多数算子,无论是时序,还是截面,都可以通过封装numpy来完成,不过技术分析类的,还是只能通过Talib这样的技术指标库。

pandas_ta实现一个指标------不过pandas_ta似乎有bug,numpy版本不兼容:

复制代码
import pandas_ta as ta


@calc_by_symbol
def ts_dema(X, d):
    ret = ta.dema(X, d)
    if ret is None:
        return pd.Series(None, index=X.index)

这些都准备好之后,因子挖掘就是使用框架的问题了,只是框架目前没有现成的、适用于因子挖掘的。

因此,我会为大家提供重写后的版本,本周是deap,下周也许会重写gplearn。

AI量化实验室------2024量化投资的星辰大海

吾日三省吾身

"懂那么多道理,却过不好这一生"。

知道到做到,还有千山万水。

财富自由快车道,从需求出发,用户在抱怨什么。

比如大家急需要策略,要因子,想知道如何挖掘因子,这就是刚需。

有些用户想要实盘,自动化交易等等。

一个反馈系统非常关键。

把事情做精,把点打透,才能产生价值。

点子不重要,点子的执行才重要,直接解决问题。

历史文章:

红利低波与创成长,加上动量过滤,年化12.6%(python代码)

年化26.4%,quantlab5.5发布------多任务机器学习组合优化,可视化策略生成向导(代码+数据)

AI量化实验室------2024量化投资的星辰大海

相关推荐
Zevalin爱灰灰5 分钟前
MATLAB GUI界面设计 第六章——常用库中的其它组件
开发语言·ui·matlab
冰糖猕猴桃12 分钟前
【Python】进阶 - 数据结构与算法
开发语言·数据结构·python·算法·时间复杂度、空间复杂度·树、二叉树·堆、图
天水幼麟16 分钟前
python学习笔记(深度学习)
笔记·python·学习
巴里巴气19 分钟前
安装GPU版本的Pytorch
人工智能·pytorch·python
wt_cs39 分钟前
银行回单ocr api集成解析-图像文字识别-文字识别技术
开发语言·python
_WndProc1 小时前
【Python】Flask网页
开发语言·python·flask
互联网搬砖老肖1 小时前
Python 中如何使用 Conda 管理版本和创建 Django 项目
python·django·conda
测试者家园1 小时前
基于DeepSeek和crewAI构建测试用例脚本生成器
人工智能·python·测试用例·智能体·智能化测试·crewai
liujing102329291 小时前
Day04_刷题niuke20250703
java·开发语言·算法
大模型真好玩1 小时前
准确率飙升!Graph RAG如何利用知识图谱提升RAG答案质量(四)——微软GraphRAG代码实战
人工智能·python·mcp