Matcha-Tts:一种基于条件流匹配的快速Tts架构笔记

MATCHA-TTS: A FAST TTS ARCHITECTURE WITH CONDITIONAL FLOW MATCHING笔记

提出问题:

1、合成速度慢

提出方法:

  1. 首先,提出了一种改进的编码器-解码器TTS架构,在解码器中使用1D CNN和Transformer的组合。这样减少了内存消耗,并且评估速度快,提高了合成速度。
  2. 其次,使用最优传输条件流匹配( OT-CFM )来训练这些模型,这是一种从数据分布中学习样本常微分方程(ODEs)的新方法。与传统的连续时间归一化流(CNFs)和基于得分匹配的概率流ODEs相比,OT - CFM定义了从源到目标的更简单的路径,能够在比DPMs更少的步骤中实现精确合成。
    方法实施中面临的问题:
    ①使用sinusoidal position embeddings进行位置依赖,不能很好的概括到长序列。解决的办法是使用旋转位置嵌入,它具有计算和记忆又是,可以推广到长距离。
    ②使用1D和2D卷积合成梅尔普图。2D将MEL图看作图像,隐式的假定在时间和频率上的评议不变性。但是MEL在频率轴上并不是完全平移不变性。并且2D解码器通常需要更多的内存,张量引入了额外的维度。已经有研究证明使用带有1D卷积的解码器可以学习到长距离依赖关系,并且合成速度快。

2、模型图如下

3、代码:https://shivammehta25.github.io/Matcha-TTS/

相关推荐
遇到困难睡大觉哈哈4 小时前
Harmony os——ArkTS 语言笔记(四):类、对象、接口和抽象类
java·笔记·spring·harmonyos·鸿蒙
程序员东岸4 小时前
《数据结构——排序(中)》选择与交换的艺术:从直接选择到堆排序的性能跃迁
数据结构·笔记·算法·leetcode·排序算法
Ccjf酷儿5 小时前
操作系统 蒋炎岩 4.数学视角的操作系统
笔记
yinchao1635 小时前
EMC设计经验-笔记
笔记
黑客思维者6 小时前
LLM底层原理学习笔记:Adam优化器为何能征服巨型模型成为深度学习的“速度与稳定之王”
笔记·深度学习·学习·llm·adam优化器
松☆6 小时前
Flutter + OpenHarmony 实战:构建离线优先的跨设备笔记应用
笔记·flutter
kk哥88996 小时前
Swift底层原理学习笔记
笔记·学习·swift
Vince丶7 小时前
UE DirectExcel使用笔记
笔记·ue5
AA陈超8 小时前
Lyra学习004:GameFeatureData分析
c++·笔记·学习·ue5·虚幻引擎
阿恩.7708 小时前
2026年1月最新计算机、人工智能、经济管理国际会议:选对会议 = 论文成功率翻倍
人工智能·经验分享·笔记·计算机网络·金融·区块链