Matcha-Tts:一种基于条件流匹配的快速Tts架构笔记

MATCHA-TTS: A FAST TTS ARCHITECTURE WITH CONDITIONAL FLOW MATCHING笔记

提出问题:

1、合成速度慢

提出方法:

  1. 首先,提出了一种改进的编码器-解码器TTS架构,在解码器中使用1D CNN和Transformer的组合。这样减少了内存消耗,并且评估速度快,提高了合成速度。
  2. 其次,使用最优传输条件流匹配( OT-CFM )来训练这些模型,这是一种从数据分布中学习样本常微分方程(ODEs)的新方法。与传统的连续时间归一化流(CNFs)和基于得分匹配的概率流ODEs相比,OT - CFM定义了从源到目标的更简单的路径,能够在比DPMs更少的步骤中实现精确合成。
    方法实施中面临的问题:
    ①使用sinusoidal position embeddings进行位置依赖,不能很好的概括到长序列。解决的办法是使用旋转位置嵌入,它具有计算和记忆又是,可以推广到长距离。
    ②使用1D和2D卷积合成梅尔普图。2D将MEL图看作图像,隐式的假定在时间和频率上的评议不变性。但是MEL在频率轴上并不是完全平移不变性。并且2D解码器通常需要更多的内存,张量引入了额外的维度。已经有研究证明使用带有1D卷积的解码器可以学习到长距离依赖关系,并且合成速度快。

2、模型图如下

3、代码:https://shivammehta25.github.io/Matcha-TTS/

相关推荐
丝斯20113 小时前
AI学习笔记整理(42)——NLP之大规模预训练模型Transformer
人工智能·笔记·学习
凉、介5 小时前
深入 QEMU Guest Agent:虚拟机内外通信的隐形纽带
c语言·笔记·学习·嵌入式·虚拟化
njsgcs5 小时前
SIMA2 论文阅读 Google 任务设定器、智能体、奖励模型
人工智能·笔记
云半S一6 小时前
pytest的学习过程
经验分享·笔记·学习·pytest
AI视觉网奇6 小时前
ue5.7 配置 audio2face
笔记·ue5
崎岖Qiu9 小时前
【OS笔记35】:文件系统的使用、实现与管理
笔记·操作系统·存储管理·文件系统·os
曦月逸霜9 小时前
离散数学-学习笔记(持续更新中~)
笔记·学习·离散数学
hunter14509 小时前
windows server AD域与CA部署证书
笔记
im_AMBER9 小时前
Leetcode 101 对链表进行插入排序
数据结构·笔记·学习·算法·leetcode·排序算法
laplace012310 小时前
# 第四章|智能体经典范式构建 —— 学习笔记(详细版)
笔记·学习