24/8/8算法笔记 不同分类算法的差异

复制代码
import numpy as np
from sklearn.tree import DecisionTreeClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.svm import SVC

from sklearn import datasets
加载数据

我们加载的是啤酒的数据

复制代码
wine = datasets.load_wine()
wine
LR逻辑斯蒂回归模型应用
复制代码
import warnings
warnings.filterwarnings('ignore')#隐藏ignore报错

%%time
score = 0
for i in range(100):
    X_train,X_test,y_train,y_test = train_test_split(X,y,test_size=0.2)
    lr = LogisticRegression()
    lr.fit(X_train,y_train)
    s=lr.score(X_test,y_test)
    score +=s/100
print('LR逻辑斯蒂回归算法多次运算平均是',score)

SVC支持向量机模型应用

复制代码
%%time
score = 0
for i in range(1000):
    X_train,X_test,y_train,y_test = train_test_split(X,y,test_size=0.2)
    model = SVC()
    model.fit(X_train,y_train)
    s=model.score(X_test,y_test)
    score +=s/1000
print('SVC算法多次运算平均是',score)
决策树模型应用
复制代码
%%time
score = 0
for i in range(1000):
    X_train,X_test,y_train,y_test = train_test_split(X,y,test_size=0.2)
    model = DecisionTreeClassifier()
    model.fit(X_train,y_train)
    s=model.score(X_test,y_test)
    score +=s/1000
print('决策树算法多次运算平均是',score)
不同算法总结对比
递归树对数据是否归一化不敏感
逻辑回归,如果不进行归一化,准确率降低,运行时间会增加
svc支持向量机,如果不进行归一化,准确率,大大降低
复制代码
model = DecisionTreeClassifier()
model.fit(X_train,y_train)
model.feature_importances_

回归模型中,就线性回归可以表示重要性的大小

相关推荐
聚客AI17 小时前
🙋‍♀️Transformer训练与推理全流程:从输入处理到输出生成
人工智能·算法·llm
大怪v19 小时前
前端:人工智能?我也会啊!来个花活,😎😎😎“自动驾驶”整起!
前端·javascript·算法
惯导马工21 小时前
【论文导读】ORB-SLAM3:An Accurate Open-Source Library for Visual, Visual-Inertial and
深度学习·算法
骑自行车的码农1 天前
【React用到的一些算法】游标和栈
算法·react.js
博笙困了1 天前
AcWing学习——双指针算法
c++·算法
moonlifesudo1 天前
322:零钱兑换(三种方法)
算法
NAGNIP2 天前
大模型框架性能优化策略:延迟、吞吐量与成本权衡
算法
美团技术团队2 天前
LongCat-Flash:如何使用 SGLang 部署美团 Agentic 模型
人工智能·算法
Fanxt_Ja2 天前
【LeetCode】算法详解#15 ---环形链表II
数据结构·算法·leetcode·链表
侃侃_天下2 天前
最终的信号类
开发语言·c++·算法