24/8/8算法笔记 不同分类算法的差异

复制代码
import numpy as np
from sklearn.tree import DecisionTreeClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.svm import SVC

from sklearn import datasets
加载数据

我们加载的是啤酒的数据

复制代码
wine = datasets.load_wine()
wine
LR逻辑斯蒂回归模型应用
复制代码
import warnings
warnings.filterwarnings('ignore')#隐藏ignore报错

%%time
score = 0
for i in range(100):
    X_train,X_test,y_train,y_test = train_test_split(X,y,test_size=0.2)
    lr = LogisticRegression()
    lr.fit(X_train,y_train)
    s=lr.score(X_test,y_test)
    score +=s/100
print('LR逻辑斯蒂回归算法多次运算平均是',score)

SVC支持向量机模型应用

复制代码
%%time
score = 0
for i in range(1000):
    X_train,X_test,y_train,y_test = train_test_split(X,y,test_size=0.2)
    model = SVC()
    model.fit(X_train,y_train)
    s=model.score(X_test,y_test)
    score +=s/1000
print('SVC算法多次运算平均是',score)
决策树模型应用
复制代码
%%time
score = 0
for i in range(1000):
    X_train,X_test,y_train,y_test = train_test_split(X,y,test_size=0.2)
    model = DecisionTreeClassifier()
    model.fit(X_train,y_train)
    s=model.score(X_test,y_test)
    score +=s/1000
print('决策树算法多次运算平均是',score)
不同算法总结对比
递归树对数据是否归一化不敏感
逻辑回归,如果不进行归一化,准确率降低,运行时间会增加
svc支持向量机,如果不进行归一化,准确率,大大降低
复制代码
model = DecisionTreeClassifier()
model.fit(X_train,y_train)
model.feature_importances_

回归模型中,就线性回归可以表示重要性的大小

相关推荐
傻小胖12 分钟前
13.BTC-思考-北大肖臻老师客堂笔记
笔记·区块链
CodeByV14 分钟前
【算法题】多源BFS
算法
TracyCoder12317 分钟前
LeetCode Hot100(18/100)——160. 相交链表
算法·leetcode
浒畔居19 分钟前
泛型编程与STL设计思想
开发语言·c++·算法
独处东汉1 小时前
freertos开发空气检测仪之输入子系统结构体设计
数据结构·人工智能·stm32·单片机·嵌入式硬件·算法
乐迪信息1 小时前
乐迪信息:AI防爆摄像机在船舶监控的应用
大数据·网络·人工智能·算法·无人机
風清掦1 小时前
【江科大STM32学习笔记-04】0.96寸OLED显示屏
笔记·stm32·学习
放荡不羁的野指针1 小时前
leetcode150题-滑动窗口
数据结构·算法·leetcode
胡西风_foxww1 小时前
ObsidianAI_学习一个陌生知识领域_建立学习路径和知识库框架_写一本书
人工智能·笔记·学习·知识库·obsidian·notebooklm·写一本书
AI视觉网奇1 小时前
huggingface-cli 安装笔记2026
前端·笔记