24/8/8算法笔记 不同分类算法的差异

import numpy as np
from sklearn.tree import DecisionTreeClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.svm import SVC

from sklearn import datasets
加载数据

我们加载的是啤酒的数据

wine = datasets.load_wine()
wine
LR逻辑斯蒂回归模型应用
import warnings
warnings.filterwarnings('ignore')#隐藏ignore报错

%%time
score = 0
for i in range(100):
    X_train,X_test,y_train,y_test = train_test_split(X,y,test_size=0.2)
    lr = LogisticRegression()
    lr.fit(X_train,y_train)
    s=lr.score(X_test,y_test)
    score +=s/100
print('LR逻辑斯蒂回归算法多次运算平均是',score)

SVC支持向量机模型应用

%%time
score = 0
for i in range(1000):
    X_train,X_test,y_train,y_test = train_test_split(X,y,test_size=0.2)
    model = SVC()
    model.fit(X_train,y_train)
    s=model.score(X_test,y_test)
    score +=s/1000
print('SVC算法多次运算平均是',score)
决策树模型应用
%%time
score = 0
for i in range(1000):
    X_train,X_test,y_train,y_test = train_test_split(X,y,test_size=0.2)
    model = DecisionTreeClassifier()
    model.fit(X_train,y_train)
    s=model.score(X_test,y_test)
    score +=s/1000
print('决策树算法多次运算平均是',score)
不同算法总结对比
递归树对数据是否归一化不敏感
逻辑回归,如果不进行归一化,准确率降低,运行时间会增加
svc支持向量机,如果不进行归一化,准确率,大大降低
model = DecisionTreeClassifier()
model.fit(X_train,y_train)
model.feature_importances_

回归模型中,就线性回归可以表示重要性的大小

相关推荐
shansjqun2 分钟前
教学内容全覆盖:航拍杂草检测与分类
人工智能·分类·数据挖掘
带多刺的玫瑰1 小时前
Leecode刷题C语言之统计不是特殊数字的数字数量
java·c语言·算法
爱敲代码的憨仔1 小时前
《线性代数的本质》
线性代数·算法·决策树
美式小田1 小时前
单片机学习笔记 9. 8×8LED点阵屏
笔记·单片机·嵌入式硬件·学习
yigan_Eins1 小时前
【数论】莫比乌斯函数及其反演
c++·经验分享·算法
猫爪笔记1 小时前
前端:HTML (学习笔记)【2】
前端·笔记·学习·html
阿史大杯茶1 小时前
AtCoder Beginner Contest 381(ABCDEF 题)视频讲解
数据结构·c++·算法
_不会dp不改名_1 小时前
HCIA笔记3--TCP-UDP-交换机工作原理
笔记·tcp/ip·udp
დ旧言~2 小时前
【高阶数据结构】图论
算法·深度优先·广度优先·宽度优先·推荐算法
张彦峰ZYF2 小时前
投资策略规划最优决策分析
分布式·算法·金融