Elasticsearch 聚合概览及示例

Elasticsearch 是一个强大的搜索引擎,除了提供搜索功能外,它还内置了丰富的聚合功能,允许用户对数据进行统计、分析和运算。聚合可以帮助我们理解数据的分布和统计特性,是数据探索和报告的重要工具。本文将介绍 Elasticsearch 中的三种主要聚合类型:桶(Bucket)聚合、度量(Metric)聚合和管道(Pipeline)聚合,并提供示例说明。

桶(Bucket)聚合

桶聚合主要用于对文档进行分组,并统计每组的文档数量。以下是几种常见的桶聚合:

  • TermAggregation:按照文档字段的词条值分组。
  • Date Histogram:按照日期阶梯分组,如按周、月或年分组。

示例:TermAggregation

假设我们有一个酒店预订数据索引,我们可以使用 TermAggregation 来统计每个城市的酒店数量。

json 复制代码
GET /hotel/_search
{
  "size": 0, // 不需要原始文档,只需要聚合结果
  "aggs": {
    "city_buckets": {
      "terms": {
        "field": "city"
      }
    }
  }
}

度量(Metric)聚合

度量聚合用于计算数值类型的字段,例如求平均值、最大值、最小值等。

  • Avg:计算平均值。
  • Max:找出最大值。
  • Min:找出最小值。
  • Stats:同时计算最大值、最小值、平均值和总和。

示例:Avg 和 Stats

继续使用酒店预订数据索引,我们可以计算每个城市酒店的平均价格和价格范围。

json 复制代码
GET /hotel/_search
{
  "size": 0,
  "aggs": {
    "price_stats": {
      "stats": {
        "field": "price"
      }
    },
    "average_price": {
      "avg": {
        "field": "price"
      }
    }
  }
}

管道(Pipeline)聚合

管道聚合是基于其他聚合结果进行的聚合,例如我们可以计算每个城市酒店价格的标准差或累计总和。

  • Derivative:计算相邻文档的度量聚合值的差异。
  • Sum Bucket:计算指定度量聚合的总和。

示例:Sum Bucket

如果我们想要计算所有城市酒店的总价格,然后查看每个城市价格的累计总和,我们可以使用 Sum Bucket 管道聚合。

json 复制代码
GET /hotel/_search
{
  "size": 0,
  "aggs": {
    "total_price": {
      "sum": {
        "field": "price"
      }
    },
    "city_price_sums": {
      "terms": {
        "field": "city"
      },
      "aggs": {
        "cumulative_price": {
          "sum_bucket_selector": {
            "buckets_path": "_price",
            "script": "params.aggregations['total_price'].value"
          }
        }
      }
    }
  }
}

结语

Elasticsearch 的聚合功能为数据分析提供了强大的支持。桶聚合帮助我们对数据进行分组统计,度量聚合让我们可以计算数值字段的各种统计数据,而管道聚合则让我们在其他聚合的基础上进一步分析数据。理解并掌握这些聚合类型,可以帮助我们更深入地洞察数据,为决策提供数据支持。希望本文能够帮助你更好地利用 Elasticsearch 的聚合功能进行数据分析。

相关推荐
贝多芬也爱敲代码4 小时前
如何减小ES和mysql的同步时间差
大数据·mysql·elasticsearch
异次元的星星5 小时前
智慧新零售时代:施易德系统平衡技术与人力,赋能门店运营
大数据·零售
深思慎考6 小时前
ElasticSearch与Kibana 入门指南(7.x版本)
大数据·elasticsearch·jenkins
银行数字化转型导师坚鹏7 小时前
如何设计优秀的企业微信私域运营实战培训方案
大数据·python·企业微信
悠闲蜗牛�7 小时前
人工智能时代下的全栈开发:整合AI、大数据与云原生的实践策略
大数据·人工智能·云原生
ml魔力信息9 小时前
活体检测与防伪技术的安全与隐私分析
大数据·人工智能·安全·隐私保护·生物识别·活体检测
数据要素X10 小时前
寻梦数据空间 | 架构篇:从概念到落地的技术实践与突破性创新
大数据·运维·数据仓库·微服务·数据治理·数据中台·可信数据空间
IT学长编程11 小时前
计算机毕业设计 基于EChants的海洋气象数据可视化平台设计与实现 Python 大数据毕业设计 Hadoop毕业设计选题【附源码+文档报告+安装调试】
大数据·hadoop·python·毕业设计·课程设计·毕业论文·海洋气象数据可视化平台
呆呆小金人11 小时前
SQL入门: HAVING用法全解析
大数据·数据库·数据仓库·sql·数据库开发·etl·etl工程师
problc12 小时前
PostgreSQL + Redis + Elasticsearch 实时同步方案实践:从触发器到高性能搜索
redis·elasticsearch·postgresql