kaggle房价预测

比赛地址:https://www.kaggle.com/c/house-prices-advanced-regression-techniques

读取数据

python 复制代码
% matplotlib inline
import torch
import torch.nn as nn
import numpy as np
import pandas as pd
import d2lzh_pytorch as d2l  # 或者直接安装d2l包:pip install d2l==0.17.6  然后导入 import d2l

print(torch.__version__)
torch.set_default_tensor_type(torch.FloatTensor)  # 设置默认的tensor类型,
复制代码
1.12.0
python 复制代码
train_data = pd.read_csv('../data/kaggle_house/train.csv')
test_data = pd.read_csv('../data/kaggle_house/test.csv')
python 复制代码
print(train_data.shape, test_data.shape)
复制代码
(1460, 81) (1459, 80)
python 复制代码
train_data.iloc[0:4, [0, 1, 2, 3, -3, -2, -1]]

| | Id | MSSubClass | MSZoning | LotFrontage | SaleType | SaleCondition | SalePrice |
| 0 | 1 | 60 | RL | 65.0 | WD | Normal | 208500 |
| 1 | 2 | 20 | RL | 80.0 | WD | Normal | 181500 |
| 2 | 3 | 60 | RL | 68.0 | WD | Normal | 223500 |

3 4 70 RL 60.0 WD Abnorml 140000

可以看到第一个特征是Id,它能帮助模型记住每个训练样本,但难以推广到测试样本,所以我们不使用它来训练。我们将所有的训练数据和测试数据的79个特征按样本连结。

python 复制代码
all_features = pd.concat((train_data.iloc[:, 1:-1], test_data.iloc[:, 1:]))

预处理数据

对连续数值的特征做标准化(standardization),对于缺失的特征值,将其替换成该特征的均值。

python 复制代码
numeric_features = all_features.dtypes[all_features.dtypes != 'object'].index  # 包含所有数值特征的列名
all_features[numeric_features] = all_features[numeric_features].apply(lambda x: (x - x.mean()) / (x.std()))
# 标准化后,每个数值特征的均值变为0,所以可以直接用0来替换缺失值
all_features[numeric_features] = all_features[numeric_features].fillna(0)

接下来将离散数值转成指示特征。举个例子,假设特征MSZoning里面有两个不同的离散值RL和RM,那么这一步转换将去掉MSZoning特征,并新加两个特征MSZoning_RL和MSZoning_RM,其值为0或1。如果一个样本原来在MSZoning里的值为RL,那么有MSZoning_RL=1且MSZoning_RM=0。

python 复制代码
# dummy_na=True将缺失值也当作合法的特征值并为其创建指示特征
all_features = pd.get_dummies(all_features, dummy_na=True)
all_features.shape  # (2919, 331)
复制代码
(2919, 331)

最后,通过values属性得到NumPy格式的数据,并转成Tensor方便后面的训练。

python 复制代码
n_train = train_data.shape[0]
train_features = torch.tensor(all_features[:n_train].values, dtype=torch.float)
test_features = torch.tensor(all_features[n_train:].values, dtype=torch.float)
train_labels = torch.tensor(train_data.SalePrice.values, dtype=torch.float).view(-1, 1)

训练模型

python 复制代码
loss = torch.nn.MSELoss()


def get_net(feature_num):
    net = nn.Linear(feature_num, 1)
    for param in net.parameters():  # 初始化模型参数
        nn.init.normal_(param, mean=0, std=0.01)
    return net

下面定义比赛用来评价模型的对数均方根误差。其定义为 1 n ∑ i = 1 n ( log ⁡ ( y i ) − log ⁡ ( y ^ i ) ) 2 \sqrt{\frac{1}{n}\sum_{i=1}^n(\log(y_i) - \log(\hat{y}_i))^2} n1i=1∑n(log(yi)−log(y^i))2

对数均方根误差的实现如下。

python 复制代码
def log_rmse(net, features, labels):
    with torch.no_grad():
        # 将小于1的值设成1,使得取对数时数值更稳定
        clipped_preds = torch.max(net(features), torch.tensor(1.0))
        rmse = torch.sqrt(loss(clipped_preds.log(), labels.log()))
    return rmse.item()
python 复制代码
def train(net, train_features, train_labels, test_features, test_labels,
          num_epochs, learning_rate, weight_decay, batch_size):
    train_ls, test_ls = [], []
    dataset = torch.utils.data.TensorDataset(train_features, train_labels)
    train_iter = torch.utils.data.DataLoader(dataset, batch_size, shuffle=True)
    # 这里使用了Adam优化算法
    optimizer = torch.optim.Adam(params=net.parameters(), lr=learning_rate, weight_decay=weight_decay)
    net = net.float()
    for epoch in range(num_epochs):
        for X, y in train_iter:
            l = loss(net(X.float()), y.float())
            optimizer.zero_grad()
            l.backward()
            optimizer.step()
        train_ls.append(log_rmse(net, train_features, train_labels))
        if test_labels is not None:
            test_ls.append(log_rmse(net, test_features, test_labels))
    return train_ls, test_ls

K折交叉验证

它将被用来选择模型设计并调节超参数。下面实现了一个函数,它返回第i折交叉验证时所需要的训练和验证数据。

python 复制代码
def get_k_fold_data(k, i, X, y):
    # 返回第i折交叉验证时所需要的训练和验证数据
    assert k > 1
    fold_size = X.shape[0] // k  # 计算每一折的数据量
    X_train, y_train = None, None
    for j in range(k):
        idx = slice(j * fold_size, (j + 1) * fold_size)
        X_part, y_part = X[idx, :], y[idx]
        if j == i:
            X_valid, y_valid = X_part, y_part
        elif X_train is None:
            X_train, y_train = X_part, y_part
        else:
            X_train = torch.cat((X_train, X_part), dim=0)
            y_train = torch.cat((y_train, y_part), dim=0)
    return X_train, y_train, X_valid, y_valid

在K折交叉验证中我们训练K次并返回训练和验证的平均误差。

python 复制代码
def k_fold(k, X_train, y_train, num_epochs, learning_rate, weight_decay, batch_size):
    train_l_sum, valid_l_sum = 0, 0
    for i in range(k):
        data = get_k_fold_data(k, i, X_train, y_train)
        net = get_net(X_train.shape[1])
        train_ls, valid_ls = train(net, *data, num_epochs, learning_rate, weight_decay, batch_size)
        train_l_sum += train_ls[-1]
        valid_l_sum += valid_ls[-1]
        if i == 0:
            d2l.semilogy(range(1, num_epochs + 1), train_ls, 'epochs', 'rmse',
                         range(1, num_epochs + 1), valid_ls,
                         ['train', 'valid'])
        print('fold %d, train rmse %f, valid rmse %f' % (i, train_ls[-1], valid_ls[-1]))
    return train_l_sum / k, valid_l_sum / k

模型选择

我们使用一组未经调优的超参数并计算交叉验证误差。可以改动这些超参数来尽可能减小平均测试误差。

python 复制代码
k, num_epochs, lr, weight_decay, batch_size = 5, 100, 5, 0, 64
train_l, valid_l = k_fold(k, train_features, train_labels, num_epochs, lr, weight_decay, batch_size)
print('%d-fold validation: avg train rmse %f, avg valid rmse %f' % (k, train_l, valid_l))
复制代码
fold 0, train rmse 0.169539, valid rmse 0.156727
fold 1, train rmse 0.162395, valid rmse 0.190494
fold 2, train rmse 0.163862, valid rmse 0.168476
fold 3, train rmse 0.167720, valid rmse 0.154207
fold 4, train rmse 0.162936, valid rmse 0.182907
5-fold validation: avg train rmse 0.165290, avg valid rmse 0.170562

预测并在Kaggle提交结果

下面定义预测函数。在预测之前,我们会使用完整的训练数据集来重新训练模型,并将预测结果存成提交所需要的格式。

python 复制代码
def train_and_pred(train_features, test_features, train_labels, test_data,
                   num_epochs, lr, weight_decay, batch_size):
    net = get_net(train_features.shape[1])
    train_ls, _ = train(net, train_features, train_labels, None, None,
                        num_epochs, lr, weight_decay, batch_size)
    d2l.semilogy(range(1, num_epochs + 1), train_ls, 'epochs', 'rmse')
    print('train rmse %f' % train_ls[-1])
    preds = net(test_features).detach().numpy()
    test_data['SalePrice'] = pd.Series(preds.reshape(1, -1)[0])
    submission = pd.concat([test_data['Id'], test_data['SalePrice']], axis=1)
    submission.to_csv('../data/kaggle_house/submission_1.csv', index=False)

设计好模型并调好超参数之后,下一步就是对测试数据集上的房屋样本做价格预测。如果我们得到与交叉验证时差不多的训练误差,那么这个结果很可能是理想的,可以在Kaggle上提交结果。

python 复制代码
train_and_pred(train_features, test_features, train_labels, test_data, num_epochs, lr, weight_decay, batch_size)
复制代码
train rmse 0.162583

上述模型无调参的情况下在Kaggle上的得分是0.16719。

参考李沐《动手学深度学习》

相关推荐
哥布林学者26 分钟前
吴恩达深度学习课程五:自然语言处理 第一周:循环神经网络 (六)长短期记忆 LSTM
深度学习·ai
bryant_meng3 小时前
【DLNR】《High-frequency Stereo Matching Network》
人工智能·深度学习·计算机视觉·stereo matching·dlnr
CodeLove·逻辑情感实验室5 小时前
深度解析:当 NLP 试图解构爱情——情感计算(Affective Computing)的伦理边界与技术瓶颈
人工智能·深度学习·自然语言处理·赛朋克
CoovallyAIHub7 小时前
工业视觉检测:多模态大模型的诱惑
深度学习·算法·计算机视觉
shangjian0079 小时前
AI大模型-核心概念-深度学习
人工智能·深度学习
PeterClerk9 小时前
RAG 评估入门:Recall@k、MRR、nDCG、Faithfulness
人工智能·深度学习·机器学习·语言模型·自然语言处理
All The Way North-9 小时前
PyTorch从零实现CIFAR-10图像分类:保姆级教程,涵盖数据加载、模型搭建、训练与预测全流程
pytorch·深度学习·cnn·图像分类·实战项目·cifar-10·gpu加速
绿洲-_-9 小时前
MBHM_DATASET_GUIDE
深度学习·机器学习
AI街潜水的八角9 小时前
深度学习洪水分割系统2:含训练测试代码和数据集
人工智能·深度学习
llddycidy10 小时前
峰值需求预测中的机器学习:基础、趋势和见解(最新文献)
网络·人工智能·深度学习