简单回归问题实战

数据表:链接: https://pan.baidu.com/s/1sSz7F_yf_JeumXcP4EjE5g?pwd=753f 提取码: 753f

核心流程:

python 复制代码
import numpy as np
# 计算误差函数 points是数据集中数据的位置
def compute_error_for_line_given_points(b,w,points):
    totalError=0
    for i in range(0,len(points)):
        x=points[i,0]
        y=points[i,1]
        totalError+=(y-(w*x+b))**2          # 公式
    return totalError/float(len(points))    # 均方误差

# 梯度下降的参数更新
def step_gradient(b_current,w_current,points,learningRate):
    b_gradient=0
    w_gradient=0
    N=float(len(points))
    for i in range(0,len(points)):
        x=points[i,0]
        y=points[i,1]
        b_gradient+=(2*(w_current*x+b_current-y))/N     # loss函数对b求导  学习率的公式!
        w_gradient+=(2*(w_current*x+b_current-y)*x)/N   # loss函数对w求导
    new_b=b_current-learningRate*b_gradient
    new_w=w_current-learningRate*w_gradient
    return [new_b,new_w]

def gradient_descent_runner(points,starting_b,starting_w,learing_rate,num_iterations):
    b=starting_b
    w=starting_w

    min_error = float('inf')  # 初始化为正无穷大
    best_b = b
    best_w = w

    for i in range(num_iterations):
        b,w=step_gradient(b,w,np.array(points),learing_rate)
        error = compute_error_for_line_given_points(b, w, points)

        # 如果当前误差小于之前记录的最小误差,则更新最小误差和最佳参数
        if error < min_error:
            min_error = error
            best_b = b
            best_w = w
    return [b,w,best_b,best_w]

def run():
    points=np.genfromtxt("E:/first/project/resource/pytorch/simple-regression/data.csv",delimiter=",")
    learning_rate=0.0001
    initial_b=0
    initial_w=0
    num_iterations=1000
    print("Starting gradient descent at b={0},w={1},error={2}".format(initial_b,initial_w,compute_error_for_line_given_points(initial_b,initial_w,points)))
    [b,w,best_b,best_w]=gradient_descent_runner(points,initial_b,initial_w,learning_rate,num_iterations)
    print("After {0} interations b={1},w={2},error={3}".format(num_iterations,b,w,compute_error_for_line_given_points(b,w,points)))
    print("After {0} interations best_b={1},best_w={2},error={3}".format(num_iterations,best_b,best_w,compute_error_for_line_given_points(best_b,best_w,points)))
run()

当梯度下降法逐渐接近损失函数的最小值时,损失函数对参数的梯度(即导数)会趋近于零。这是因为在最小值点处,损失函数的变化率(即斜率)是最小的。因此,当 b_gradient 和 w_gradient 变得非常小时,更新量 learningRate * b_gradient 和 learningRate * w_gradient 也会变得非常小,导致 b 和 w 的变化几乎可以忽略不计。所以一般线性模型只有一个最低点的时候,会出现这种情况,找到最合适的b w后,后续迭代参数几乎不会变化

的变化几乎可以忽略不计。所以一般线性模型只有一个最低点的时候,会出现这种情况,找到最合适的b w后,后续迭代参数几乎不会变化

相关推荐
橡晟4 小时前
深度学习入门:让神经网络变得“深不可测“⚡(二)
人工智能·python·深度学习·机器学习·计算机视觉
墨尘游子4 小时前
神经网络的层与块
人工智能·python·深度学习·机器学习
倔强青铜34 小时前
苦练Python第18天:Python异常处理锦囊
开发语言·python
Leah01054 小时前
机器学习、深度学习、神经网络之间的关系
深度学习·神经网络·机器学习·ai
企鹅与蟒蛇5 小时前
Ubuntu-25.04 Wayland桌面环境安装Anaconda3之后无法启动anaconda-navigator问题解决
linux·运维·python·ubuntu·anaconda
autobaba5 小时前
编写bat文件自动打开chrome浏览器,并通过selenium抓取浏览器操作chrome
chrome·python·selenium·rpa
Rvelamen6 小时前
LLM-SECURITY-PROMPTS大模型提示词攻击测评基准
人工智能·python·安全
【本人】6 小时前
Django基础(一)———创建与启动
后端·python·django
SHIPKING3937 小时前
【python】基于pygame实现动态粒子爱心
开发语言·python·pygame
九章云极AladdinEdu7 小时前
摩尔线程MUSA架构深度调优指南:从CUDA到MUSA的显存访问模式重构原则
人工智能·pytorch·深度学习·机器学习·语言模型·tensorflow·gpu算力