【三维重建】InstantSplat:稀疏视角的无SfM高斯泼溅 (3D Gaussian Splatting)

![# 系列文章目录

例如:第一章 Python 机器学习入门之pandas的使用](https://i-blog.csdnimg.cn/direct/6304d4a714f045b488949062fdc7b3b2.png)


提示:关注B站【方矩实验室】,查看视频讲解

文章目录


1.摘要

InstantSplat将多视图立体(MVS)预测与基于点的表示相结合,在几秒钟内从稀疏视图数据构建大规模场景的3D高斯模型,解决了SfM的性能和效率问题。

具体来说,InstantSplat在所有训练视图中生成密集填充的表面点,并使用像素对齐来确定初始相机参数 。并且采用了一个基于网格与置信度感知的最远点采样方法并行,以提升计算效率。最后通过自监督联合优化相机位姿以及GS参数

通过使用这个简化的框架,InstantSplat实现了训练时间的大幅减少,从几个小时到几秒钟-并在不同数据集中的各种视图数量上表现出强大的性能。

2.Introduction

3.主要方法

整体上,通过DUSt 3R 得到稠密点云,然后利用其置信度做稠密点云的下采样 作为3DGS的初始点云,然后联合优化相机位姿与高斯参数

3.1 MVS( DUSt 3R )




3.2 GS的初始化

3.3 联合优化

4.实验

5.总结


相关推荐
土豆12504 小时前
终端自治时代的 AI 开发范式:Claude Code CLI 全方位实操指南
前端·人工智能·程序员
开利网络4 小时前
从“流量”到“留量”:长效用户运营的底层逻辑
大数据·运维·人工智能·自动化·云计算
机器之心4 小时前
OpenAI最强代码模型GPT-5.2-Codex上线
人工智能·openai
深蓝学院4 小时前
自动驾驶目标检测十年进化之路:从像素、点云到多模态大模型的时代
人工智能·目标检测·自动驾驶
CoovallyAIHub4 小时前
从“模仿”到“进化”!华科&小米开源MindDrive:在线强化学习重塑「语言-动作」闭环驾驶
深度学习·算法·计算机视觉
whaosoft-1434 小时前
51c自动驾驶~合集62
人工智能·机器学习·自动驾驶
梦梦c4 小时前
检查数据集信息
人工智能·计算机视觉
OpenBayes4 小时前
Open-AutoGLM 实现手机端自主操作;PhysDrive 数据集采集真实驾驶生理信号
人工智能·深度学习·机器学习·数据集·文档转换·图片生成·蛋白质设计
小北的AI科技分享4 小时前
信息技术领域中AI智能体的核心特性及模块构成
人工智能
pusheng20254 小时前
普晟传感直播预告 |重塑安全边界:储能与AI数据中心的锂电风险、气体探测技术革新与可量化风险管控
人工智能·安全