【三维重建】InstantSplat:稀疏视角的无SfM高斯泼溅 (3D Gaussian Splatting)

![# 系列文章目录

例如:第一章 Python 机器学习入门之pandas的使用](https://i-blog.csdnimg.cn/direct/6304d4a714f045b488949062fdc7b3b2.png)


提示:关注B站【方矩实验室】,查看视频讲解

文章目录


1.摘要

InstantSplat将多视图立体(MVS)预测与基于点的表示相结合,在几秒钟内从稀疏视图数据构建大规模场景的3D高斯模型,解决了SfM的性能和效率问题。

具体来说,InstantSplat在所有训练视图中生成密集填充的表面点,并使用像素对齐来确定初始相机参数 。并且采用了一个基于网格与置信度感知的最远点采样方法并行,以提升计算效率。最后通过自监督联合优化相机位姿以及GS参数

通过使用这个简化的框架,InstantSplat实现了训练时间的大幅减少,从几个小时到几秒钟-并在不同数据集中的各种视图数量上表现出强大的性能。

2.Introduction

3.主要方法

整体上,通过DUSt 3R 得到稠密点云,然后利用其置信度做稠密点云的下采样 作为3DGS的初始点云,然后联合优化相机位姿与高斯参数

3.1 MVS( DUSt 3R )




3.2 GS的初始化

3.3 联合优化

4.实验

5.总结


相关推荐
90后小陈老师1 分钟前
3D个人简历网站 5.天空、鸟、飞机
前端·javascript·3d
小羊Linux客栈5 分钟前
自动化:批量文件重命名
运维·人工智能·python·自动化·游戏程序
Mr数据杨5 小时前
【Dv3Admin】插件 dv3admin_chatgpt 集成大语言模型智能模块
人工智能·语言模型·chatgpt
zm-v-159304339865 小时前
AI 赋能 Copula 建模:大语言模型驱动的相关性分析革新
人工智能·语言模型·自然语言处理
zhz52146 小时前
AI数字人融合VR全景:从技术突破到可信场景落地
人工智能·vr·ai编程·ai数字人·ai agent·智能体
数据与人工智能律师6 小时前
虚拟主播肖像权保护,数字时代的法律博弈
大数据·网络·人工智能·算法·区块链
武科大许志伟6 小时前
武汉科技大学人工智能与演化计算实验室许志伟课题组参加2025中国膜计算论坛
人工智能·科技
哲讯智能科技6 小时前
【无标题】威灏光电&哲讯科技MES项目启动会圆满举行
人工智能
__Benco6 小时前
OpenHarmony平台驱动开发(十七),UART
人工智能·驱动开发·harmonyos
前端小崔6 小时前
从零开始学习three.js(18):一文详解three.js中的着色器Shader
前端·javascript·学习·3d·webgl·数据可视化·着色器