【三维重建】InstantSplat:稀疏视角的无SfM高斯泼溅 (3D Gaussian Splatting)

![# 系列文章目录

例如:第一章 Python 机器学习入门之pandas的使用](https://i-blog.csdnimg.cn/direct/6304d4a714f045b488949062fdc7b3b2.png)


提示:关注B站【方矩实验室】,查看视频讲解

文章目录


1.摘要

InstantSplat将多视图立体(MVS)预测与基于点的表示相结合,在几秒钟内从稀疏视图数据构建大规模场景的3D高斯模型,解决了SfM的性能和效率问题。

具体来说,InstantSplat在所有训练视图中生成密集填充的表面点,并使用像素对齐来确定初始相机参数 。并且采用了一个基于网格与置信度感知的最远点采样方法并行,以提升计算效率。最后通过自监督联合优化相机位姿以及GS参数

通过使用这个简化的框架,InstantSplat实现了训练时间的大幅减少,从几个小时到几秒钟-并在不同数据集中的各种视图数量上表现出强大的性能。

2.Introduction

3.主要方法

整体上,通过DUSt 3R 得到稠密点云,然后利用其置信度做稠密点云的下采样 作为3DGS的初始点云,然后联合优化相机位姿与高斯参数

3.1 MVS( DUSt 3R )




3.2 GS的初始化

3.3 联合优化

4.实验

5.总结


相关推荐
默 语2 小时前
AI驱动软件测试全流程自动化:从理论到实践的深度探索
运维·人工智能·驱动开发·ai·自动化·ai技术·测试全流程
说私域2 小时前
基于开源AI大模型、AI智能名片与S2B2C商城小程序的购物中心精准零售数据架构研究
人工智能·小程序·开源
key062 小时前
大模型在网络安全领域的应用与评测
网络·人工智能·web安全
北京耐用通信3 小时前
破解工业通信瓶颈:耐达讯自动化Modbus转Profinet网关连接驱动器的奥秘
人工智能·物联网·网络协议·自动化·信息与通信
应用市场3 小时前
OpenCV进阶:图像变换、增强与特征检测实战
人工智能·opencv·计算机视觉
说私域3 小时前
开源链动2+1模式、AI智能名片与S2B2C商城小程序:社群经济的数字化重构路径
人工智能·小程序·开源
lingchen19063 小时前
卷积神经网络中的卷积运算原理
深度学习·计算机视觉·cnn
rengang663 小时前
智能化的重构建议:大模型分析代码结构,提出可读性和性能优化建议
人工智能·性能优化·重构·ai编程
灵遁者书籍作品3 小时前
语言的拓扑学约束公理:语言对实在的描述具有拓扑不变量——某些真理必须通过悖论、沉默或隐喻表达
人工智能·计算机视觉
一尘之中3 小时前
觉醒的拓扑学:在量子纠缠与神经幻象中重构现实认知
人工智能·重构