得到任务式 大模型应用开发学习方案

根据您提供的文档内容以及您制定的大模型应用开发学习方案,我们可以进一步细化任务式学习的计划方案。以下是具体的任务式学习方案:

任务设计

初级任务
  1. 大模型概述:阅读相关资料,总结大模型的概念、发展历程和应用领域。
  2. 深度学习基础:学习深度学习的基本原理,了解常见的模型架构。
  3. 自然语言处理基础:研究自然语言处理的基本任务和常见技术。
  4. Prompt Engineering基础:了解Prompt Engineering的概念,尝试编写简单的AI指令。
  5. RAG技术概览:了解Retrieval-Augmented Generation的基本原理和应用场景。
中级任务
  1. 深入学习Prompt Engineering:编写更复杂的AI指令,分析其效果。
  2. 实践RAG技术:在特定场景下应用RAG技术,如智能知识库或智能诊断。
  3. Fine-tuning入门:学习Fine-tuning的基本原理,尝试对基础大模型进行微调。
  4. Function Calling探索:了解Function Calling的用途,尝试开发简单的AI应用。
  5. 选择大模型平台:研究不同大模型平台的优缺点,选择适合自己项目的平台。
高级任务
  1. 优化Prompt Engineering:针对特定应用场景,优化AI指令,提高AI响应的准确性和相关性。
  2. RAG技术应用挑战:在更复杂的场景中应用RAG技术,如多语言知识库或高级情报分析。
  3. Fine-tuning高级实验:选择多个基础大模型,进行Fine-tuning比较实验,分析不同模型的性能差异。
  4. 开发复杂AI应用:设计并实现一个复杂的AI应用,集成多种AI技术。
  5. 大模型技术架构创新:基于现有技术,设计一个创新的大模型应用技术架构。

过程设计

  • 情绪卡点:设定学习目标和奖励机制,如完成每个阶段后进行一次AI技术分享会。
  • 时间卡点:为每个任务设定明确的时间限制,使用时间管理工具跟踪进度。
  • 能力卡点:提供每个任务的学习资源,如教程、案例研究、在线课程等。

反馈设计

  • 进步肯定:指出在学习过程中掌握的新技能和理解深化的知识点。
  • 问题分析:分析在学习过程中遇到的具体问题,如技术理解不足或应用场景选择不当。
  • 行动建议 :根据学习进度,提供下一步学习的具体建议,如深入研究特定技术或实践更复杂的应用场景。
    通过以上学习方案,您将能够掌握大模型应用开发的核心技能,并能够开发出具有实用价值的大模型应用。
相关推荐
threelab6 分钟前
12.three官方示例+编辑器+AI快速学习webgl_buffergeometry_indexed
学习·编辑器·webgl
jerry60914 分钟前
LLM笔记(六)线性代数
笔记·学习·线性代数·自然语言处理
ghost14318 分钟前
C#学习第23天:面向对象设计模式
开发语言·学习·设计模式·c#
Yan_ks44 分钟前
计算机组成原理——数据的表示
学习
freellf1 小时前
go语言学习进阶
后端·学习·golang
真的想上岸啊1 小时前
学习51单片机02
嵌入式硬件·学习·51单片机
小刘要努力呀!1 小时前
嵌入式开发学习(第二阶段 C语言基础)
c语言·学习·算法
圈圈编码2 小时前
MVVM框架
android·学习·kotlin
I"ll carry you4 小时前
【2025.5.12】视觉语言模型 (更好、更快、更强)
人工智能·语言模型·自然语言处理
关于不上作者榜就原神启动那件事4 小时前
Java基础学习
java·开发语言·学习