KNN 图像识别

KNN(K-Nearest Neighbors,K最近邻)算法是一种简单而有效的分类算法,也可以用于图像识别。它的基本思想是通过计算样本之间的距离,将待分类的样本归为其在训练集中最相近的K个样本所属的类别中最常见的类别

[1. 准备工作](#1. 准备工作)

[2. 图像预处理](#2. 图像预处理)

[3. 数据处理与分割](#3. 数据处理与分割)

[4. 标签准备](#4. 标签准备)

[5. 训练与测试KNN模型](#5. 训练与测试KNN模型)

6.检验测试结果:

7.我们可以输入自己的一些例子再来测试训练的如何。


1. 准备工作

首先,我们需要一个图像数据集。

以此图像为例

该图像应当包含一个50x100的网格,每个单元格中包含一个手写数字(0-9),所以总共有5000个数字样本如何将数据样本提取出来呢。

2. 图像预处理

我们将图像加载为灰度图像并进行分割:

python 复制代码
import numpy as np
import cv2

img = cv2.imread('图片位置')#读取图片
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) #图像灰度化

cells = [np.hsplit(row, 100) for row in np.vsplit(gray, 50)]
# 将图像分割成50x100的网格

我们使用np.vsplit将图像按行分割成50个部分,然后对每个部分使用np.hsplit按列分割成100个单元格。这样,我们得到了一个包含5000个单元格的数组,每个单元格中包含一个手写数字的图像。在调试过程中可以看到已经分割成功

我们可以查看是如何保存的

3. 数据处理与分割

接下来,我们将图像数据整理成训练和测试数据:

python 复制代码
x = np.array(cells)
train = x[:, :50]
test = x[:, 50:100]

# 将图像数据展平以适应KNN输入
train_new = train.reshape(-1, 400).astype(np.float32)
test_new = test.reshape(-1, 400).astype(np.float32)

这里,我们将每个数字图像展平成一个400维的向量(20x20的图像)。这些展平的向量作为KNN算法的输入特征

4. 标签准备

我们需要准备训练和测试标签,以便模型可以学习和评估:

python 复制代码
k = np.arange(10)
labels = np.repeat(k, 250)
train_labels = labels[:, np.newaxis]
test_labels = np.repeat(k, 250)[:, np.newaxis]

在这里,np.repeat(k, 250)生成了每个数字(0-9)出现250次的标签数组。每个训练和测试样本都有对应的标签。

5. 训练与测试KNN模型

我们使用OpenCV的KNN算法来训练和测试我们的模型:

python 复制代码
knn = cv2.ml.KNearest_create()#创建训练
knn.train(train_new, cv2.ml.ROW_SAMPLE, train_labels)#进行训练
ret, result, neighbours, dist = knn.findNearest(test_new, k=5)#设置k值

在这段代码中,我们创建了一个KNN模型,并用训练数据进行训练。之后,使用findNearest方法来对测试数据进行预测

6.检验测试结果:
python 复制代码
print(result2)
matches = result == test_labels
correct = np.count_nonzero(matches)
accuracy = correct * 100.0 / result.size
print(accuracy)

通过对比预测结果与实际标签,我们可以计算模型的准确率。准确率表示模型正确分类的测试样本占总测试样本的比例

7.我们可以输入自己的一些例子再来测试训练的如何。

我们输入的图片格式要和训练数据的图片大小相同

python 复制代码
img2 = cv2.imread('你的图片位置')#读取图片
gray2 = cv2.cvtColor(img2, cv2.COLOR_BGR2GRAY)#图像灰度化

x2 = np.array(gray2)#只输入一个数据,所以可以直接处理
test2 =x2[:,:]
test2_new = test2.reshape(-1,400).astype(np.float32)



ret2, result2, neighbours2, dist2 = knn.findNearest(test2_new, k=5)#设置k值进行预测
print(result2)#输出结果

全代码

python 复制代码
import numpy as np
import cv2

img = cv2.imread('图片位置')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

img2 = cv2.imread('你的图片位置')
gray2 = cv2.cvtColor(img2, cv2.COLOR_BGR2GRAY)

cells = [np.hsplit(row, 100) for row in np.vsplit(gray, 50)]


x = np.array(cells)
x2 = np.array(gray2)

train = x[:, :50]
test = x[:, 50:100]
test2 =x2[:,:]


train_new = train.reshape(-1, 400).astype(np.float32)
test_new = test.reshape(-1, 400).astype(np.float32)
test2_new = test2.reshape(-1,400).astype(np.float32)

k = np.arange(10)
labels = np.repeat(k, 250)

train_labels = labels[:, np.newaxis]
test_labels = np.repeat(k, 250)[:, np.newaxis]

knn = cv2.ml.KNearest_create()
knn.train(train_new, cv2.ml.ROW_SAMPLE, train_labels)
ret, result, neighbours, dist = knn.findNearest(test_new, k=5)
ret2, result2, neighbours2, dist2 = knn.findNearest(test2_new, k=11)



print(result2)
matches = result == test_labels
correct = np.count_nonzero(matches)
accuracy = correct * 100.0 / result.size
print(accuracy)

我们可以设置不同的k值来是预测结果更加精确

总结

通过以上步骤,我们使用OpenCV和KNN算法实现了一个简单的手写数字识别系统。尽管这个示例相对简单,但它展示了如何从数据预处理、模型训练到性能评估的完整流程。在实际应用中,我们可以进一步优化模型,尝试更多先进的算法,或使用更复杂的数据集以提升性能。

相关推荐
HealthScience1 分钟前
【异常错误】pycharm debug view变量的时候显示不全,中间会以...显示
ide·python·pycharm
LCG元20 分钟前
大模型驱动的围术期质控系统全面解析与应用探索
人工智能
lihuayong32 分钟前
计算机视觉:主流数据集整理
人工智能·计算机视觉·mnist数据集·coco数据集·图像数据集·cifar-10数据集·imagenet数据集
政安晨40 分钟前
政安晨【零基础玩转各类开源AI项目】DeepSeek 多模态大模型Janus-Pro-7B,本地部署!支持图像识别和图像生成
人工智能·大模型·多模态·deepseek·janus-pro-7b
一ge科研小菜鸡1 小时前
DeepSeek 与后端开发:AI 赋能云端架构与智能化服务
人工智能·云原生
冰 河1 小时前
‌最新版DeepSeek保姆级安装教程:本地部署+避坑指南
人工智能·程序员·openai·deepseek·冰河大模型
维维180-3121-14551 小时前
AI赋能生态学暨“ChatGPT+”多技术融合在生态系统服务中的实践技术应用与论文撰写
人工智能·chatgpt
豌豆花下猫1 小时前
Python 潮流周刊#90:uv 一周岁了,优缺点分析(摘要)
后端·python·ai
終不似少年遊*1 小时前
词向量与词嵌入
人工智能·深度学习·nlp·机器翻译·词嵌入
杜大哥1 小时前
如何在WPS打开的word、excel文件中,使用AI?
人工智能·word·excel·wps