YOLOV8对于classify分类任务更换resnet18主干网络

1. 先定义残差18模块的网络

复制代码
class Resnet18(nn.Module):
    def __init__(self):
        super().__init__()
        model = models.resnet18(pretrained=True)
        self.layer=nn.Sequential(
        model.conv1,
        model.bn1,
        model.relu,
        model.maxpool,
        model.layer1,
        model.layer2,
        model.layer3,
        model.layer4,
        model.avgpool
        )
    def forward(self, x):
        x=self.layer(x)
        return x

添加到conv.py末尾

注册模块

2.task.py更改

3.更改Yaml文件

复制代码
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8-cls image classification model. For Usage examples see https://docs.ultralytics.com/tasks/classify

# Parameters
nc: 1000 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n-cls.yaml' will call yolov8-cls.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.33, 0.25, 1024]
  s: [0.33, 0.50, 1024]
  m: [0.67, 0.75, 1024]
  l: [1.00, 1.00, 1024]
  x: [1.00, 1.25, 1024]

# YOLOv8.0n backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
  - [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
  - [-1, 3, C2f, [128, True]]
  - [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
  - [-1, 6, C2f, [256, True]]
  - [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
  - [-1, 6, C2f, [512, True]]
  - [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
  - [-1, 3, C2f, [1024, True]]

# YOLOv8.0n head
head:
  - [-1, 1, Classify, [nc]] # Classify

4.最后训练测试一下

复制代码
from ultralytics import YOLO


def main():  # 不加这句有时候就会报错
    model = YOLO(r"yolov8-cls-resnet18.yaml").load('yolov8n-cls.pt') 
    model.train(data=R'E:\python_code\ultralytics-8.2.74\datasets\DIP', imgsz=128,epochs=10)

if __name__ == '__main__':  # 不加这句就会报错
    main()  # 不加这句有时候就会报错
相关推荐
qq_254674418 小时前
回归、分类、聚类
分类·回归·聚类
B站_计算机毕业设计之家10 小时前
深度血虚:Django水果检测识别系统 CNN卷积神经网络算法 python语言 计算机 大数据✅
python·深度学习·计算机视觉·信息可视化·分类·cnn·django
AI浩10 小时前
PAB-Mamba-YoLo: VSSM 辅助 YOLO 用于断奶仔猪攻击行为检测
yolo
元直数字电路验证17 小时前
感知机:乳腺癌分类实现 & K 均值聚类:从零实现
均值算法·分类·聚类
王哈哈^_^18 小时前
【完整源码+数据集】草莓数据集,yolov8草莓成熟度检测数据集 3207 张,草莓成熟度数据集,目标检测草莓识别算法系统实战教程
人工智能·算法·yolo·目标检测·计算机视觉·视觉检测·毕业设计
油泼辣子多加19 小时前
【实战】自然语言处理--长文本分类(3)HAN算法
算法·自然语言处理·分类
大大dxy大大1 天前
机器学习实现逻辑回归-癌症分类预测
机器学习·分类·逻辑回归
王哈哈^_^1 天前
YOLOv11视觉检测实战:安全距离测算全解析
人工智能·数码相机·算法·yolo·计算机视觉·目标跟踪·视觉检测
深度学习lover1 天前
<数据集>yolo航拍交通目标识别数据集<目标检测>
人工智能·python·yolo·目标检测·计算机视觉·航拍交通目标识别
Coovally AI模型快速验证1 天前
视觉语言模型(VLM)深度解析:如何用它来处理文档
人工智能·yolo·目标跟踪·语言模型·自然语言处理·开源