YOLOV8对于classify分类任务更换resnet18主干网络

1. 先定义残差18模块的网络

复制代码
class Resnet18(nn.Module):
    def __init__(self):
        super().__init__()
        model = models.resnet18(pretrained=True)
        self.layer=nn.Sequential(
        model.conv1,
        model.bn1,
        model.relu,
        model.maxpool,
        model.layer1,
        model.layer2,
        model.layer3,
        model.layer4,
        model.avgpool
        )
    def forward(self, x):
        x=self.layer(x)
        return x

添加到conv.py末尾

注册模块

2.task.py更改

3.更改Yaml文件

复制代码
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8-cls image classification model. For Usage examples see https://docs.ultralytics.com/tasks/classify

# Parameters
nc: 1000 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n-cls.yaml' will call yolov8-cls.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.33, 0.25, 1024]
  s: [0.33, 0.50, 1024]
  m: [0.67, 0.75, 1024]
  l: [1.00, 1.00, 1024]
  x: [1.00, 1.25, 1024]

# YOLOv8.0n backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
  - [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
  - [-1, 3, C2f, [128, True]]
  - [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
  - [-1, 6, C2f, [256, True]]
  - [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
  - [-1, 6, C2f, [512, True]]
  - [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
  - [-1, 3, C2f, [1024, True]]

# YOLOv8.0n head
head:
  - [-1, 1, Classify, [nc]] # Classify

4.最后训练测试一下

复制代码
from ultralytics import YOLO


def main():  # 不加这句有时候就会报错
    model = YOLO(r"yolov8-cls-resnet18.yaml").load('yolov8n-cls.pt') 
    model.train(data=R'E:\python_code\ultralytics-8.2.74\datasets\DIP', imgsz=128,epochs=10)

if __name__ == '__main__':  # 不加这句就会报错
    main()  # 不加这句有时候就会报错
相关推荐
razelan14 小时前
yolo 4 - 进阶技巧 QA
yolo
Ethan Hunt丶17 小时前
运动想象脑电的基本原理与分类方法
人工智能·分类·数据挖掘·脑机接口
dundunmm19 小时前
【每天一个知识点】YOLO算法
算法·yolo·目标检测
ASD123asfadxv19 小时前
基于改进Faster R-CNN的鸭蛋质量检测与分类系统_x101-32x8d_fpn_ms-3x_coco模型详解
人工智能·分类·cnn
山海青风21 小时前
人工智能基础与应用 - 数据处理、建模与预测流程 8 基础模型之分类模型
人工智能·分类·数据挖掘
一招定胜负21 小时前
支持向量机实现垃圾邮件分类及参数调优原理
算法·支持向量机·分类
Blossom.1181 天前
边缘智能新篇章:YOLOv8在树莓派5上的INT8量化部署全攻略
人工智能·python·深度学习·学习·yolo·react.js·transformer
算法与编程之美1 天前
探索不同的损失函数对分类精度的影响
人工智能·算法·机器学习·分类·数据挖掘
AI浩1 天前
RDD4D:基于4D注意力引导的道路损伤检测与分类
人工智能·分类·数据挖掘
Hello.Reader2 天前
Flink ML KNN 入门基于 Table API 的近邻分类
机器学习·分类·flink