使用RestHighLevelClient进行Elasticsearch Function Score查询

简介

Function Score查询在Elasticsearch中是一个强大的工具,它允许我们根据一个或多个函数来调整查询结果的相关性得分。这使得我们可以基于某些条件对搜索结果进行更精细的控制。本文将介绍如何在Java应用程序中使用Elasticsearch的RestHighLevelClient执行Function Score查询,并提供DSL(Domain Specific Language)查询示例。

环境准备

确保您的项目中已经添加了Elasticsearch客户端库的依赖。如果使用Maven,可以在pom.xml文件中添加如下依赖:

xml 复制代码
<dependency>
    <groupId>org.elasticsearch.client</groupId>
    <artifactId>elasticsearch-rest-high-level-client</artifactId>
    <version>7.15.0</version> <!-- 使用最新的稳定版本 -->
</dependency>

Function Score查询示例

1. Function Score基础

在Elasticsearch中,可以通过FunctionScoreQueryBuilder来构建Function Score查询。

DSL
json 复制代码
GET /hotel/_search
{
  "query": {
    "function_score": {
      "query": {
        "match": {
          "name": "外滩"
        }
      },
      "functions": [
        {
          "filter": {
            "term": {
              "brand": "如家"
            }
          },
          "weight": 5
        }
      ],
      "score_mode": "multiply", // 可选,指定得分的组合方式,默认为multiply
      "boost_mode": "multiply"  // 可选,指定如何将最终得分与查询本身的得分组合,默认为multiply
    }
  }
}
Java Code
java 复制代码
@Test
void testFunctionScoreQuery() throws IOException {
    // 1. 准备 SearchRequest
    SearchRequest request = new SearchRequest("hotel"); // 指定索引名称

    // 2. 准备 Function Score查询
    FunctionScoreQueryBuilder functionScoreQueryBuilder = QueryBuilders.functionScoreQuery(
        QueryBuilders.matchQuery("name", "外滩"),
        new FunctionScoreQueryBuilder.FilterFunctionBuilder[]{
            new FunctionScoreQueryBuilder.FilterFunctionBuilder(
                QueryBuilders.termQuery("brand", "如家"),
                ScoreFunctionBuilders.weightFactorFunction(5)
            )
        }
    );

    // 3. 构建搜索源
    SearchSourceBuilder sourceBuilder = new SearchSourceBuilder().query(functionScoreQueryBuilder);

    // 4. 将搜索源设置到搜索请求
    request.source(sourceBuilder);

    // 5. 发送请求
    SearchResponse response = client.search(request, RequestOptions.DEFAULT);

    // 6. 解析响应
    printSearchResponse(response);
}

private void printSearchResponse(SearchResponse response) throws IOException {
    // 响应解析逻辑...
}

结语

Elasticsearch的Function Score查询提供了一种灵活的方式来调整文档的相关性得分,这在实现复杂的搜索需求时非常有用。通过RestHighLevelClient,我们可以方便地在Java应用程序中实现这一功能。本文提供的示例代码展示了如何使用Java的RestHighLevelClient进行Function Score查询,并给出了DSL查询示例,希望能够帮助开发者更好地利用Elasticsearch的Function Score功能。

相关推荐
桃林春风一杯酒2 小时前
HADOOP_HOME and hadoop.home.dir are unset.
大数据·hadoop·分布式
桃木山人3 小时前
BigData File Viewer报错
大数据·java-ee·github·bigdata
B站计算机毕业设计超人3 小时前
计算机毕业设计Python+DeepSeek-R1高考推荐系统 高考分数线预测 大数据毕设(源码+LW文档+PPT+讲解)
大数据·python·机器学习·网络爬虫·课程设计·数据可视化·推荐算法
数造科技3 小时前
紧随“可信数据空间”政策风潮,数造科技正式加入开放数据空间联盟
大数据·人工智能·科技·安全·敏捷开发
逸Y 仙X6 小时前
Git常见命令--助力开发
java·大数据·git·java-ee·github·idea
元气满满的热码式7 小时前
logstash中的input插件(http插件,graphite插件)
网络·网络协议·http·elasticsearch·云原生
caihuayuan47 小时前
PHP建立MySQL持久化连接(长连接)及mysql与mysqli扩展的区别
java·大数据·sql·spring
B站计算机毕业设计超人7 小时前
计算机毕业设计Hadoop+Spark+DeepSeek-R1大模型民宿推荐系统 hive民宿可视化 民宿爬虫 大数据毕业设计(源码+LW文档+PPT+讲解)
大数据·hadoop·爬虫·机器学习·课程设计·数据可视化·推荐算法
silianpan7 小时前
文档检索服务平台
elasticsearch·搜索引擎·开源
(; ̄ェ ̄)。8 小时前
在nodejs中使用ElasticSearch(二)核心概念,应用
大数据·elasticsearch·搜索引擎