语音识别(实时语音转录)——funasr的详细部署和使用教程(包括实时语音转录)

阿里达摩院开源大型端到端语音识别工具包FunASR:

FunASR提供了在大规模工业语料库上训练的模型,并能够将其部署到应用程序中。工具包的核心模型是Paraformer,这是一个非自回归的端到端语音识别模型,经过手动注释的普通话语音识别数据集进行了训练,该数据集包含60,000小时的语音数据。为了提高Paraformer的性能,本文在标准的Paraformer基础上增加了时间戳预测和热词定制能力。此外,为了便于模型部署,本文还开源了基于前馈时序记忆网络FSMN-VAD的语音活动检测模型和基于可控时延Transformer(CT-Transformer)的文本后处理标点模型,这两个模型都是在工业语料库上训练的。这些功能模块为构建高精度的长音频语音识别服务提供了坚实的基础,与在公开数据集上训练的其它模型相比,Paraformer展现出了更卓越的性能。 FunASR 的中文语音转写效果比 Whisper 更优秀。

一、环境配置

https://github.com/modelscope/FunASR

复制代码
conda create -n funasr python=3.9

conda activate funasr

conda install pytorch==2.3.1 torchvision==0.18.1 torchaudio==2.3.1 pytorch-cuda=11.8 -c pytorch -c nvidia

pip install -U funasr

pip install -U modelscope huggingface_hub

二、简单示例

需要下载模型

1.非流式

python 复制代码
from funasr import AutoModel
from funasr.utils.postprocess_utils import rich_transcription_postprocess

model_dir = "iic/SenseVoiceSmall"

model = AutoModel(
    model=model_dir,
    vad_model="fsmn-vad",
    vad_kwargs={"max_single_segment_time": 30000},
    device="cuda:0",
)

# en
res = model.generate(
    input=f"{model.model_path}/example/en.mp3",
    cache={},
    language="auto",  # "zn", "en", "yue", "ja", "ko", "nospeech"
    use_itn=True,
    batch_size_s=60,
    merge_vad=True,  #
    merge_length_s=15,
)
text = rich_transcription_postprocess(res[0]["text"])
print(text)

英文识别:

中文识别:

2.流式

python 复制代码
from funasr import AutoModel

chunk_size = [0, 10, 5] #[0, 10, 5] 600ms, [0, 8, 4] 480ms
encoder_chunk_look_back = 4 #number of chunks to lookback for encoder self-attention
decoder_chunk_look_back = 1 #number of encoder chunks to lookback for decoder cross-attention

model = AutoModel(model="iic/paraformer-zh-streaming")

import soundfile
import os

wav_file = os.path.join(model.model_path, "example/asr_example.wav")
speech, sample_rate = soundfile.read(wav_file)
chunk_stride = chunk_size[1] * 960 # 600ms

cache = {}
total_chunk_num = int(len((speech)-1)/chunk_stride+1)
for i in range(total_chunk_num):
    speech_chunk = speech[i*chunk_stride:(i+1)*chunk_stride]
    is_final = i == total_chunk_num - 1
    res = model.generate(input=speech_chunk, cache=cache, is_final=is_final, chunk_size=chunk_size, encoder_chunk_look_back=encoder_chunk_look_back, decoder_chunk_look_back=decoder_chunk_look_back)
    print(res)

三、服务器部署

\funasr_samples\samples\python

python 复制代码
python funasr_wss_server.py

运行服务器端:

运行客户端:即可使用麦克风,进行实时转录。

python 复制代码
python funasr_wss_client.py
相关推荐
亚图跨际11 分钟前
大脑、机器人与贝叶斯信念及AI推理
人工智能·机器人
MonkeyKing_sunyuhua33 分钟前
6.1 客户服务:智能客服与自动化支持系统的构建
人工智能·agent
啊阿狸不会拉杆2 小时前
人工智能数学基础(三):微积分初步
人工智能·python·算法·数学建模
蜂耘2 小时前
面向人工智能、量子科技、人形机器人等产业,山东启动制造业创新中心培育认定
人工智能·科技·机器人
深眸财经3 小时前
业绩回暖、股价承压,三只松鼠赴港上市能否重构价值锚点?
人工智能
AIwenIPgeolocation3 小时前
硬件加密+本地部署,大模型一体机如何打造AI安全护城河?
人工智能·安全
非凸科技3 小时前
非凸科技受邀出席AI SPARK活动,共探生成式AI驱动金融新生态
人工智能·科技·金融
啊阿狸不会拉杆4 小时前
人工智能数学基础(四):线性代数
人工智能·python·数学·算法·机器学习
OceanBase数据库官方博客4 小时前
OceanBase 跻身 Forrester 三大领域代表厂商,全面支撑AI场景
人工智能·oceanbase·分布式数据库
像风一样_4 小时前
机器学习-入门-决策树(1)
人工智能·决策树·机器学习