【Python机器学习】利用PCA来简化数据——示例:利用PCA对半导体制造数据降维

数据背景:

通过半导体工程上的一些过程数据,对一些产品进行是否有缺陷的验证。

数据样例:

数据中包含了590个特征,且存在很多的缺失值,这些缺失值是以NaN标识的。因为在590个特征下,几乎所有样本都有NaN,因此去除不完整的样本不太现实。尽管我们可以将所有的NaN替换成0,但是由于并不知道这些值的意义,所以这样做是下策。比如如果有特征是温度值,那么这样处理就会出问题。

下面我们用平均值来代替缺失值,平均值根据那些非NaN得到:

python 复制代码
def replaceNanWithMean():
    datMat=loadDataSet('test/secom.data',' ')
    numFeat=shape(datMat)[1]
    for i in range(numFeat):
        #计算所有非NaN的平均值
        meanVal=mean(datMat[nonzero(~isnan(datMat[:,i].A))[0],i])
        #将所有的NaN置为平均值
        datMat[nonzero(isnan(datMat[:,i].A))[0],i]=meanVal
    return datMat

上述代码首先打开了数据集并计算出了其特征的数目,然后再在所有的特征上进行循环。对于每个特征,首先计算出那些非NaN值的平均值。然后,将所有的NaN替换成该平均值。

我们已经去除了所有的NaN,接下来在数据集上应用PCA。首先确认所需特征和可以去除特征的数目。PCA会给出数据中所包含的信息量。需要注意的是,数据和信息之间具有巨大的区别。数据指的是接收的原始材料,其中可能包含噪声和不相关信息。信息是指数据中的相关部分。这些并非只是抽象概念,我们还可以定量的计算数据中所包含的信息并决定保留的比例。

通过已有代码去除均值、计算协方差矩阵:

python 复制代码
dataMat=replaceNanWithMean()
meanVals=mean(dataMat,axis=0)
meanRemoved=dataMat-meanVals
covMat=cov(meanRemoved,rowvar=0)

最后对该矩阵进行特征值分析:

python 复制代码
eigVals,eigVects=linalg.eig(mat(covMat))
print(eigVals)

如上图,有很多数值,其中,有超过20%的特征值都是0,这意味着这些特征都是其他特征的副本,也就是说它们可以通过其他特征来表示,而本身没有提供额外的信息。

从大小排序来看,前15个的数量级大于10^5,这些是重要特征,只占所有特征的一部分。

相关推荐
唐某人丶6 小时前
教你如何用 JS 实现 Agent 系统(2)—— 开发 ReAct 版本的“深度搜索”
前端·人工智能·aigc
FIT2CLOUD飞致云7 小时前
九月月报丨MaxKB在不同规模医疗机构的应用进展汇报
人工智能·开源
阿里云大数据AI技术7 小时前
【新模型速递】PAI-Model Gallery云上一键部署Qwen3-Next系列模型
人工智能
袁庭新7 小时前
全球首位AI机器人部长,背负反腐重任
人工智能·aigc
机器之心7 小时前
谁说Scaling Law到头了?新研究:每一步的微小提升会带来指数级增长
人工智能·openai
该用户已不存在7 小时前
Mojo vs Python vs Rust: 2025年搞AI,该学哪个?
后端·python·rust
算家计算7 小时前
AI配音革命!B站最新开源IndexTTS2本地部署教程:精准对口型,情感随心换
人工智能·开源·aigc
量子位8 小时前
马斯克周末血裁xAI 500人
人工智能·ai编程
算家计算8 小时前
OpenAI最强编程模型GPT-5-Codex发布!可独立编程7小时,编程效率提升10倍
人工智能·ai编程·资讯
站大爷IP9 小时前
Java调用Python的5种实用方案:从简单到进阶的全场景解析
python