【Python机器学习】利用PCA来简化数据——示例:利用PCA对半导体制造数据降维

数据背景:

通过半导体工程上的一些过程数据,对一些产品进行是否有缺陷的验证。

数据样例:

数据中包含了590个特征,且存在很多的缺失值,这些缺失值是以NaN标识的。因为在590个特征下,几乎所有样本都有NaN,因此去除不完整的样本不太现实。尽管我们可以将所有的NaN替换成0,但是由于并不知道这些值的意义,所以这样做是下策。比如如果有特征是温度值,那么这样处理就会出问题。

下面我们用平均值来代替缺失值,平均值根据那些非NaN得到:

python 复制代码
def replaceNanWithMean():
    datMat=loadDataSet('test/secom.data',' ')
    numFeat=shape(datMat)[1]
    for i in range(numFeat):
        #计算所有非NaN的平均值
        meanVal=mean(datMat[nonzero(~isnan(datMat[:,i].A))[0],i])
        #将所有的NaN置为平均值
        datMat[nonzero(isnan(datMat[:,i].A))[0],i]=meanVal
    return datMat

上述代码首先打开了数据集并计算出了其特征的数目,然后再在所有的特征上进行循环。对于每个特征,首先计算出那些非NaN值的平均值。然后,将所有的NaN替换成该平均值。

我们已经去除了所有的NaN,接下来在数据集上应用PCA。首先确认所需特征和可以去除特征的数目。PCA会给出数据中所包含的信息量。需要注意的是,数据和信息之间具有巨大的区别。数据指的是接收的原始材料,其中可能包含噪声和不相关信息。信息是指数据中的相关部分。这些并非只是抽象概念,我们还可以定量的计算数据中所包含的信息并决定保留的比例。

通过已有代码去除均值、计算协方差矩阵:

python 复制代码
dataMat=replaceNanWithMean()
meanVals=mean(dataMat,axis=0)
meanRemoved=dataMat-meanVals
covMat=cov(meanRemoved,rowvar=0)

最后对该矩阵进行特征值分析:

python 复制代码
eigVals,eigVects=linalg.eig(mat(covMat))
print(eigVals)

如上图,有很多数值,其中,有超过20%的特征值都是0,这意味着这些特征都是其他特征的副本,也就是说它们可以通过其他特征来表示,而本身没有提供额外的信息。

从大小排序来看,前15个的数量级大于10^5,这些是重要特征,只占所有特征的一部分。

相关推荐
张槊哲7 分钟前
函数的定义与使用(python)
开发语言·python
船长@Quant11 分钟前
文档构建:Sphinx全面使用指南 — 实战篇
python·markdown·sphinx·文档构建
北辰浮光15 分钟前
[Mybatis-plus]
java·开发语言·mybatis
青松@FasterAI30 分钟前
【程序员 NLP 入门】词嵌入 - 上下文中的窗口大小是什么意思? (★小白必会版★)
人工智能·自然语言处理
AIGC大时代1 小时前
高效使用DeepSeek对“情境+ 对象 +问题“型课题进行开题!
数据库·人工智能·算法·aigc·智能写作·deepseek
硅谷秋水1 小时前
GAIA-2:用于自动驾驶的可控多视图生成世界模型
人工智能·机器学习·自动驾驶
光而不耀@lgy1 小时前
C++初登门槛
linux·开发语言·网络·c++·后端
lkbhua莱克瓦241 小时前
用C语言实现——一个中缀表达式的计算器。支持用户输入和动画演示过程。
c语言·开发语言·数据结构·链表·学习方法·交友·计算器
Mr__Miss1 小时前
面试踩过的坑
java·开发语言
偶尔微微一笑1 小时前
AI网络渗透kali应用(gptshell)
linux·人工智能·python·自然语言处理·编辑器