超简单理解LSTM和GRU模型

目录

RNN在反向传播时容易遭受梯度消失的问题,而梯度是用于更新神经网络权重的关键因子,梯度消失描述的是梯度在时间序列反向传播中逐渐减小的情况。

若梯度过小,它对于网络的学习贡献甚微。结果是,在RNN中,梯度更新很小的层级,并不能有效的学习。

RNN 容易遗忘较长序列中的信息,从而只留下短期记忆。

LSTM 和 GRU 正是为了解决短期记忆而设计的。

而LSTM的核心概念是它们的单元状态和各种门。

细胞状态如同一条信息告诉通道,持续传递至整个序列中,它可被视作网络的记忆中心。




参考资料

1\] [超简单理解LSTM和GRU模型,深度学习入门](https://www.bilibili.com/video/BV1EP411Y74W/?spm_id_from=333.337.search-card.all.click&vd_source=b5e395daf1dc59fb72b2633affa96661) 2023.8

相关推荐
Mixtral33 分钟前
2026年春招复盘记录工具测评:告别手动整理,AI自动生成求职总结
人工智能·面试·职场和发展·语音转文字·ai语音转文字
Quintus五等升5 小时前
深度学习④|分类任务—VGG13
人工智能·经验分享·深度学习·神经网络·学习·机器学习·分类
2501_936146045 小时前
小型机械零件识别与分类--基于YOLO12-A2C2f-DFFN-DYT模型的创新实现
人工智能·分类·数据挖掘
天天讯通6 小时前
金融邀约实时质检:呼叫监控赋能客服主管
人工智能·金融
机器学习之心6 小时前
LSTM-BP组合模型多输入单输出回归预测三模型对比,对比LSTM、BP神经网络,权重优化,MATLAB代码
神经网络·回归·lstm·lstm-bp·组合模型多输入单输出回归预测
飞Link6 小时前
深度解析 MSER 最大稳定极值区域算法
人工智能·opencv·算法·计算机视觉
夜勤月6 小时前
给AI装上“文件之手”:深入解析MCP文件系统服务的安全沙箱与读写实践
人工智能·安全
万物得其道者成7 小时前
UI UX Pro Max: AI 驱动的设计系统生成引擎深度解析
人工智能·ui·ux
码农三叔7 小时前
(3-2)机器人身体结构与人体仿生学:人形机器人躯干系统
人工智能·架构·机器人·人形机器人
bleuesprit7 小时前
LLM语言模型Lora微调
人工智能·语言模型·lora