超简单理解LSTM和GRU模型

目录

RNN在反向传播时容易遭受梯度消失的问题,而梯度是用于更新神经网络权重的关键因子,梯度消失描述的是梯度在时间序列反向传播中逐渐减小的情况。

若梯度过小,它对于网络的学习贡献甚微。结果是,在RNN中,梯度更新很小的层级,并不能有效的学习。

RNN 容易遗忘较长序列中的信息,从而只留下短期记忆。

LSTM 和 GRU 正是为了解决短期记忆而设计的。

而LSTM的核心概念是它们的单元状态和各种门。

细胞状态如同一条信息告诉通道,持续传递至整个序列中,它可被视作网络的记忆中心。




参考资料

1\] [超简单理解LSTM和GRU模型,深度学习入门](https://www.bilibili.com/video/BV1EP411Y74W/?spm_id_from=333.337.search-card.all.click&vd_source=b5e395daf1dc59fb72b2633affa96661) 2023.8

相关推荐
学电子她就能回来吗4 分钟前
深度学习速成:损失函数与反向传播
人工智能·深度学习·学习·计算机视觉·github
The Straggling Crow4 分钟前
model training platform
人工智能
爱吃泡芙的小白白5 分钟前
突破传统:CNN卷积层(普通/空洞)核心技术演进与实战指南
人工智能·神经网络·cnn·卷积层·空洞卷积·普通卷积
人道领域12 分钟前
AI抢人大战:谁在收割你的红包
大数据·人工智能·算法
初恋叫萱萱16 分钟前
CANN 系列深度篇:基于 ge 图引擎构建高效 AI 执行图
人工智能
qq_124987075334 分钟前
基于Hadoop的信贷风险评估的数据可视化分析与预测系统的设计与实现(源码+论文+部署+安装)
大数据·人工智能·hadoop·分布式·信息可视化·毕业设计·计算机毕业设计
Coder_Boy_37 分钟前
TensorFlow小白科普
人工智能·深度学习·tensorflow·neo4j
L、21838 分钟前
CANN 中的图优化技术详解:如何让 AI 模型跑得更快、更省
人工智能
大模型玩家七七40 分钟前
梯度累积真的省显存吗?它换走的是什么成本
java·javascript·数据库·人工智能·深度学习
新缸中之脑41 分钟前
像画家一样编程
人工智能