【ASFF】《Learning Spatial Fusion for Single-Shot Object Detection》

arXiv-2019

https://github.com/GOATmessi7/ASFF


文章目录

  • [1 Background and Motivation](#1 Background and Motivation)
  • [2 Related Work](#2 Related Work)
  • [3 Advantages / Contributions](#3 Advantages / Contributions)
  • [4 Method](#4 Method)
    • [4.1 Strong Baseline](#4.1 Strong Baseline)
    • [4.2 Adaptively Spatial Feature Fusion](#4.2 Adaptively Spatial Feature Fusion)
      • [4.2.1 Feature Resizing](#4.2.1 Feature Resizing)
      • [4.2.2 Adaptive Fusion](#4.2.2 Adaptive Fusion)
    • [4.3 Consistency Property](#4.3 Consistency Property)
  • [5 Experiments](#5 Experiments)
    • [5.1 Datasets and Metrics](#5.1 Datasets and Metrics)
    • [5.2 Ablation Study](#5.2 Ablation Study)
    • [5.3 Evaluation on Other Single-Shot Detector](#5.3 Evaluation on Other Single-Shot Detector)
    • [5.4 Comparison to State of the Art](#5.4 Comparison to State of the Art)
  • [6 Conclusion(own) / Future work](#6 Conclusion(own) / Future work)

1 Background and Motivation

目标检测任务中,特征金字塔技术可以缓解目标的 scale variation(同一类物体,物体的尺寸可能不一样)

the inconsistency across different feature scales is a primary limitation for the single-shot detectors based on feature pyramid(同一类物体,特征最好一样,但是由于尺寸原因,会分布在特征金字塔的不同 level 上,不同 level 的特征也没有强制协同,可能会影响效果)

if an image contains both small and large objects, the conflict among features at different levels tends to occupy the major part of the feature pyramid

作者提出 adaptively spatial feature fusion (ASFF), improving the scale-invariance of features,nearly free inference overhead

Feature pyramid representations or multi-level feature

still suffer from the inconsistency across different scales

作者的方法

adaptively learns the import degrees(入度) for different levels of features on each location to avoid spatial contradiction

3 Advantages / Contributions

提出 ASFF 模块,即插即用且基本 cost free,强化特征金字塔能力,to address the inconsistency in feature pyramids of single-shot detector

在 COCO 数据集上验证了其有效性

4 Method

4.1 Strong Baseline

开源的 yolov3 基础上,引入了一些比较好的 trick,效果提升明显

BoF 是 Bag of freebies

Zhang Z, He T, Zhang H, et al. Bag of freebies for training object detection neural networks[J]. arXiv preprint arXiv:1902.04103, 2019.

GA 是 guided anchoring

Wang J, Chen K, Yang S, et al. Region proposal by guided anchoring[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2019: 2965-2974.

细节可以跳转到本博客最后总结部分

IoU 指的是额外引入了 IoU loss

4.2 Adaptively Spatial Feature Fusion

adaptively learn the spatial weight of fusion for feature maps at each scale

本文的核心

4.2.1 Feature Resizing

下采样 2 倍时,2-stride 1x1 convolution

下采样 4 倍时,add a 2-stride max pooling layer before the 2-stride convolution

上采样用的插值

4.2.2 Adaptive Fusion

核心公式

Let x i j n → l x_{ij}^{n →l} xijn→ldenote the feature vector at the position (i, j) on the feature maps resized from level n n n to level l l l.

特征金字塔 resize 到同一尺寸,然后加权在一起,只不过加权的系数是 learning 出来的,权重 shared across all the channels,有点类似于空间注意力

α i j l + β i j l + γ i j l = 1 \alpha_{ij}^{l} + \beta_{ij}^{l} + \gamma_{ij}^{l} = 1 αijl+βijl+γijl=1

加权系数约束到了和为1,实现的话就是 softmax

λ \lambda λ 为 control parameters------代码中好像没有体现

看看代码

python 复制代码
class ASFF(nn.Module):
    def __init__(self, level, rfb=False, vis=False):
        super(ASFF, self).__init__()
        self.level = level
        self.dim = [512, 256, 256]
        self.inter_dim = self.dim[self.level]
        if level==0:
            self.stride_level_1 = add_conv(256, self.inter_dim, 3, 2)
            self.stride_level_2 = add_conv(256, self.inter_dim, 3, 2)
            self.expand = add_conv(self.inter_dim, 1024, 3, 1)
        elif level==1:
            self.compress_level_0 = add_conv(512, self.inter_dim, 1, 1)
            self.stride_level_2 = add_conv(256, self.inter_dim, 3, 2)
            self.expand = add_conv(self.inter_dim, 512, 3, 1)
        elif level==2:
            self.compress_level_0 = add_conv(512, self.inter_dim, 1, 1)
            self.expand = add_conv(self.inter_dim, 256, 3, 1)

        compress_c = 8 if rfb else 16  #when adding rfb, we use half number of channels to save memory

        self.weight_level_0 = add_conv(self.inter_dim, compress_c, 1, 1)
        self.weight_level_1 = add_conv(self.inter_dim, compress_c, 1, 1)
        self.weight_level_2 = add_conv(self.inter_dim, compress_c, 1, 1)

        self.weight_levels = nn.Conv2d(compress_c*3, 3, kernel_size=1, stride=1, padding=0)
        self.vis= vis


    def forward(self, x_level_0, x_level_1, x_level_2):
        if self.level==0:
            level_0_resized = x_level_0
            level_1_resized = self.stride_level_1(x_level_1)

            level_2_downsampled_inter =F.max_pool2d(x_level_2, 3, stride=2, padding=1)
            level_2_resized = self.stride_level_2(level_2_downsampled_inter)

        elif self.level==1:
            level_0_compressed = self.compress_level_0(x_level_0)
            level_0_resized =F.interpolate(level_0_compressed, scale_factor=2, mode='nearest')
            level_1_resized =x_level_1
            level_2_resized =self.stride_level_2(x_level_2)
        elif self.level==2:
            level_0_compressed = self.compress_level_0(x_level_0)
            level_0_resized =F.interpolate(level_0_compressed, scale_factor=4, mode='nearest')
            level_1_resized =F.interpolate(x_level_1, scale_factor=2, mode='nearest')
            level_2_resized =x_level_2

        level_0_weight_v = self.weight_level_0(level_0_resized) # 缩放后的特征图压缩成 16 通道
        level_1_weight_v = self.weight_level_1(level_1_resized) # 缩放后的特征图压缩成 16 通道
        level_2_weight_v = self.weight_level_2(level_2_resized) # 缩放后的特征图压缩成 16 通道
        levels_weight_v = torch.cat((level_0_weight_v, level_1_weight_v, level_2_weight_v),1) # concat 在一起
        levels_weight = self.weight_levels(levels_weight_v) # 变成 3 通道
        levels_weight = F.softmax(levels_weight, dim=1) # 沿通道做 softmax

        fused_out_reduced = level_0_resized * levels_weight[:,0:1,:,:]+\
                            level_1_resized * levels_weight[:,1:2,:,:]+\
                            level_2_resized * levels_weight[:,2:,:,:]  # 与缩放后的特征图加权在一起

        out = self.expand(fused_out_reduced) # 扩充通道数

        if self.vis:
            return out, levels_weight, fused_out_reduced.sum(dim=1)
        else:
            return out

其中 add_conv 定义如下

python 复制代码
def add_conv(in_ch, out_ch, ksize, stride, leaky=True):
    """
    Add a conv2d / batchnorm / leaky ReLU block.
    Args:
        in_ch (int): number of input channels of the convolution layer.
        out_ch (int): number of output channels of the convolution layer.
        ksize (int): kernel size of the convolution layer.
        stride (int): stride of the convolution layer.
    Returns:
        stage (Sequential) : Sequential layers composing a convolution block.
    """
    stage = nn.Sequential()
    pad = (ksize - 1) // 2
    stage.add_module('conv', nn.Conv2d(in_channels=in_ch,
                                       out_channels=out_ch, kernel_size=ksize, stride=stride,
                                       padding=pad, bias=False))
    stage.add_module('batch_norm', nn.BatchNorm2d(out_ch))
    if leaky:
        stage.add_module('leaky', nn.LeakyReLU(0.1))
    else:
        stage.add_module('relu6', nn.ReLU6(inplace=True))
    return stage

level = 0

level = 1

level = 2

4.3 Consistency Property

反向传播推导推导

简化一下

感觉 resize 的时候如果涉及到了 conv + activation 的话,不太能简化吧,哈哈

进一步简化,当多个特征图融合的方式为 add 或者 concat 的时候

结果为

作者方法的反向传播公式为

这样通过设置 α \alpha α 就可以避免各 level 梯度的影响

比如目标由 level 1 负责预测, α i j 1 = 1 \alpha_{ij}^1 = 1 αij1=1, α i j 2 = 0 \alpha_{ij}^2 = 0 αij2=0, α i j 3 = 1 \alpha_{ij}^3 = 1 αij3=1

5 Experiments

5.1 Datasets and Metrics

MS COCO 2017

AP

5.2 Ablation Study

(1)Solid Baseline

Table1,前面第四小节已介绍过了

(2) Effectiveness of Adjacent Ignore Regions

前面说梯度的时候说 ignor 不好,这里又是 ignore area,可能我还没有理解到精髓,需看看参考文献和代码加深下理解

(3)Adaptively Spatial Feature Fusion

exhibit the images that have several objects of different sizes



5.3 Evaluation on Other Single-Shot Detector

体现了其即插即用

5.4 Comparison to State of the Art

6 Conclusion(own) / Future work

  • trained to find the optimal fusion
  • fusion is differential(可微分的,也即可以反向传播)

Wang J, Chen K, Yang S, et al. Region proposal by guided anchoring[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2019: 2965-2974.

目标检测正负样本区分策略和平衡策略总结(三)



相关推荐
IT_陈寒10 分钟前
React 性能优化必杀技:这5个Hook组合让你的应用提速50%!
前端·人工智能·后端
剪一朵云爱着1 小时前
一文入门:机器学习
人工智能·机器学习
hi0_61 小时前
机器学习实战(一): 什么是机器学习
人工智能·机器学习·机器人·机器学习实战
ChinaRainbowSea1 小时前
9. LangChain4j + 整合 Spring Boot
java·人工智能·spring boot·后端·spring·langchain·ai编程
有Li1 小时前
基于联邦学习与神经架构搜索的可泛化重建:用于加速磁共振成像|文献速递-最新医学人工智能文献
论文阅读·人工智能·文献·医学生
桃花键神1 小时前
从传统到智能:3D 建模流程的演进与 AI 趋势 —— 以 Blender 为例
人工智能·3d·blender
星期天要睡觉1 小时前
计算机视觉(opencv)实战十七——图像直方图均衡化
人工智能·opencv·计算机视觉
大视码垛机1 小时前
速度与安全双突破:大视码垛机重构工业自动化新范式
大数据·数据库·人工智能·机器人·自动化·制造
feifeigo1231 小时前
星座SAR动目标检测(GMTI)
人工智能·算法·目标跟踪
WWZZ20251 小时前
视觉SLAM第10讲:后端2(滑动窗口与位子图优化)
c++·人工智能·后端·算法·ubuntu·机器人·自动驾驶