【深度学习】Human3.6M索引和部位

c 复制代码
joint_name={
'Hips(髋部)': 0,
'RightUpLeg(右大腿)': 1,
'RightLeg(右小腿)': 2,
'RightFoot(右脚)': 3,
'LeftUpLeg(左大腿)': 4,
'LeftLeg(左小腿)': 5,
'LeftFoot(左脚)': 6,
'Spine(脊柱)': 7,
'Spine1(脊柱1)': 8,
'Neck(颈部)': 9,
'Neck1(颈部1)': 10,
'LeftArm(左臂)': 11,
'LeftForeArm(左前臂)': 12,
'LeftHand(左手)': 13,
'RightArm(右臂)': 14,
'RightForeArm(右前臂)': 15,
'RightHand(右手)': 16
}

coco to h36m:

c 复制代码
def h36m_coco_format(keypoints, scores):
    assert len(keypoints.shape) == 4 and len(scores.shape) == 3
 
    h36m_kpts = []
    h36m_scores = []
    valid_frames = []
 
    for i in range(keypoints.shape[0]):
        kpts = keypoints[i]
        score = scores[i]
 
        new_score = np.zeros_like(score, dtype=np.float32)
 
        if np.sum(kpts) != 0.:
            kpts, valid_frame = coco_h36m(kpts)
            h36m_kpts.append(kpts)
            valid_frames.append(valid_frame)
 
            new_score[:, h36m_coco_order] = score[:, coco_order]
            new_score[:, 0] = np.mean(score[:, [11, 12]], axis=1, dtype=np.float32)
            new_score[:, 8] = np.mean(score[:, [5, 6]], axis=1, dtype=np.float32)
            new_score[:, 7] = np.mean(new_score[:, [0, 8]], axis=1, dtype=np.float32)
            new_score[:, 10] = np.mean(score[:, [1, 2, 3, 4]], axis=1, dtype=np.float32)
 
            h36m_scores.append(new_score)
 
    h36m_kpts = np.asarray(h36m_kpts, dtype=np.float32)
    h36m_scores = np.asarray(h36m_scores, dtype=np.float32)
 
    return h36m_kpts, h36m_scores, valid_frames

可视化:

c 复制代码
import numpy as np
 
 
import cv2
import numpy as np
import json
 
 
kpt_color_map = {'h': {'id': 0, 'color': [255, 0, 0], 'radius': 3, 'thickness': -1}, 'tail': {'id': 1, 'color': [0, 255, 0], 'radius': 2, 'thickness': -1}}
 
# 点类别文字
kpt_labelstr = {'font_size': 1,  # 字体大小
    'font_thickness': 3,  # 字体粗细
    'offset_x': 20,  # X 方向,文字偏移距离,向右为正
    'offset_y': 10,  # Y 方向,文字偏移距离,向下为正
}
 
labelme_path = r'E:\data\new_path\635_5225_02-1\input\0000.json'
with open(labelme_path, 'r', encoding='utf-8') as f:
    labelme = json.load(f)
 
img_bgr=cv2.imread(r'E:\data\new_path\635_5225_02-1\input\0000.png')
 
for each_ann in labelme['shapes']:  # 遍历每一个标注
 
 
    kpt_label = each_ann['label']  # 该点的类别
 
    for point in each_ann['points']:
        kpt_xy = point
        kpt_x, kpt_y = int(kpt_xy[0]), int(kpt_xy[1])
 
        # 该点的可视化配置
        kpt_color = kpt_color_map[kpt_label]['color']  # 颜色
        kpt_radius = kpt_color_map[kpt_label]['radius']  # 半径
        kpt_thickness = kpt_color_map[kpt_label]['thickness']  # 线宽(-1代表填充)
 
        # 画圆:画该关键点
        img_bgr = cv2.circle(img_bgr, (kpt_x, kpt_y), kpt_radius, kpt_color, kpt_thickness)
 
        # 写该点类别文字:图片,文字字符串,文字左上角坐标,字体,字体大小,颜色,字体粗细
        img_bgr = cv2.putText(img_bgr, kpt_label, (kpt_x + kpt_labelstr['offset_x'], kpt_y + kpt_labelstr['offset_y']), cv2.FONT_HERSHEY_SIMPLEX, kpt_labelstr['font_size'], kpt_color, kpt_labelstr['font_thickness'])
 
cv2.imshow('img',img_bgr)
cv2.waitKey(0)
 

参考:https://github.com/gauraviiita/Visualization-of-Human3.6M-Dataset/

相关推荐
Mxsoft6197 分钟前
电力系统基于知识蒸馏的轻量化智能运维模型部署与边缘计算集成
运维·人工智能·边缘计算
2501_9411481511 分钟前
边缘计算与物联网技术在智能交通与城市管理优化中的创新应用研究
人工智能·边缘计算
ModestCoder_11 分钟前
Tokenization的演进:从NLP基石到多模态AI的“通用翻译器”
开发语言·人工智能·自然语言处理·机器人·具身智能
霍格沃兹测试开发学社测试人社区13 分钟前
揭开帷幕:如何实现UI回归测试的全面自主化
人工智能·ui·自动化
原来是好奇心18 分钟前
Spring AI 入门实战:快速构建智能 Spring Boot 应用
人工智能·spring boot·spring
xuehaikj34 分钟前
文档类型识别与分类_yolo13-C3k2-SFSConv实现详解
人工智能·数据挖掘
2501_9411463234 分钟前
物联网与边缘计算在智能农业监测与精准种植系统中的创新应用研究
人工智能·物联网·边缘计算
Mintopia37 分钟前
🛰️ 低带宽环境下的 AIGC 内容传输优化技术
前端·人工智能·trae
aneasystone本尊37 分钟前
学习 LiteLLM 的模型管理
人工智能
Mintopia1 小时前
⚡Trae Solo Coding 的效率法则
前端·人工智能·trae