multimodel ocr dataset

InternLM-XComposer2-4KHD

InternLM-XComposer2-4KHD=

a light-weight Vision Encoder OpenAI ViT-Large/14+Large Language Model InternLM2-7B,

这篇论文采用的是一种动态分辨率的输入;

全图有一个global view,resize到336*336;

然后把图片resize再padding到336的整数倍划分成patch;

然后为了保留图片的2D信息,每一行结束的时候有个\n的分隔符,不同view之间有个sp分割符

We keep the ViT resolution as 336 × 336 and increase the input resolution with more patches. For the Dynamic Image Partition strategy, we use 'HD-25' for the pertaining

以下是一些预训练的策略:

实际pretrain的时候是HD-25,每4个token会concat和MLP成为一个token;

再finetune阶段是混合的策略,对于需要高分辨率的任务,比如说图表,就采用的分辨率HD55,,有一些是origin_sizeHD30,还有一些是HD25;





In terms of other OCR-related tasks, the

performance gain attributable to increased resolution is relatively minor.

在其他任务上,提升分辨率带来的收益比较小,但是对于ocr任务而言,提升分辨率带来的收益比较大;

全局试图的影响非常大:

当固定token数目的时候,是否使用换行符\n影响不大,但是tokens数目非常动态的时候,不使用换行符会导致性能降低;

InternVL-2.0的ocr数据集构建

https://internvl.github.io/blog/2024-07-02-InternVL-2.0/

![在这里插入图片描述](https://i-blog.csdnimg.cn/direct/5bd5fd44bc5d447e82ecb5ba8f3438ec.png

How Far Are We to GPT-4V?

Closing the Gap to Commercial Multimodal Models with Open-Source Suites

训练ocr任务的时候会把visiual encoder和mlp都打开;





Blip3


blip3训练的时候没有带上框,论文里面说可以训练下带上框的潜力;

200M的标注中有些包含框,有些没有包含框:

预训练数据越多,评测效果越好;

不同backbone的选择对于ocr任务的影响比较大;

使用不同的visual tokens数目带来的影响差别不大;

不同分辨率输入的结果:

相关推荐
Virgil13913 小时前
【TrOCR】训练代码
人工智能·深度学习·ocr
weixin_307779132 天前
批量OCR的GitHub项目
python·github·ocr
AI人工智能+2 天前
应用俄文OCR技术,为跨语言交流与数字化管理提供更强大的支持
人工智能·ocr·文字识别
云天徽上3 天前
【PaddleOCR】OCR表格识别数据集介绍,包含PubTabNet、好未来表格识别、WTW中文场景表格等数据,持续更新中......
python·ocr·文字识别·表格识别·paddleocr·pp-ocrv5
Edward-tan5 天前
基于 opencv+yolov8+easyocr的车牌追踪识别
python·opencv·ocr·yolov8
晓13136 天前
OpenCV篇——项目(二)OCR文档扫描
人工智能·python·opencv·pycharm·ocr
秋窗76 天前
Mac 部署Latex OCR并优化体验(打包成App并支持全局快捷键)
macos·ocr·latex
RainSerein6 天前
Laravel8中调取腾讯云文字识别OCR
ocr·php·腾讯云·laravel
老胖闲聊16 天前
Python pytesseract【OCR引擎库】 简介
开发语言·python·ocr
沉到海底去吧Go17 天前
【工具教程】PDF指定区域OCR识别重命名工具使用教程和注意事项
pdf·ocr·图片区域识别改名·仓储物流单据识别·物流单据识别改名·pdf区域识别改名·pdf区域识别重命名