数据结构----队列

1 什么是队列?
只允许在两端进行插入和删除操作的线性表,在队尾插入,在队头删除 插入的一端,被称为"队尾",删除的一端被称为"队头"
在队列操作过程中,为了提高效率,以调整指针代替队列元素的移动,并将数组作为循环队列的操作空间。
2 队列的特点
先进先出 FIFO first in first out
后进后出 LILO last in last out

一丶循环队列(顺序队列)

逻辑结构:线性结构

存储结构:顺序存储

操作:增删改查

1.创建空的队列

2.入列

3.求长度

cs 复制代码
#include <stdio.h>
#include <stdlib.h>
#define N 10
typedef int datatype;//重定义数据类型
typedef struct Sequeue//重定义结构体
{
    datatype data[N];//定义一个数组存放数据
    int head;//队列的头,输出数据
    int tail;//队列的尾,存放数据
} node_t, *node_p;
node_p CreateEmList()//建立一个新的空队列
{
    node_p p = (node_p)malloc(sizeof(node_t));
    if (NULL == p)
    {
        printf("create err");
        return NULL;
    }
    p->head = p->tail = 0;//初始化队列元素
    return p;
}
int IsEmlist(node_p p)//判断队列是否为空
{
    return p->head == p->tail;//为空时返回1
}
int Isfull(node_p p)//判断队列是否为满
{
    return (p->tail + 1) % N == p->head;//为满时返回1
}
int Lenlist(node_p p)//计算队列长度
{
    return (p->tail - p->head + N) % N;
}
void Clear(node_p p)//清空队列
{
    p->head = p->tail;
}
int Pushdata(node_p p, int data)//入列
{
    if (Isfull(p))
    {
        printf("Push err");
        return -1;
    }
    p->data[p->tail] = data;
    p->tail = (p->tail + 1) % N;//更新队尾tail
    return 0;
}
int Popdata(node_p p)//输出数据
{
    if (IsEmlist(p))//判空
    {
        printf("pop err");
        return -1;
    }
    datatype temp = p->data[p->head];//将输出数据存放到temp中
    p->head = (p->head + 1) % N;//更新队头head
    return temp;
}
int main(int argc, char const *argv[])
{
    node_p p = CreateEmList();
    Pushdata(p, 1);
    Pushdata(p, 2);
    Pushdata(p, 3);
    while (!IsEmlist(p))
    {
        printf("%d ", Popdata(p));
    }
    Pushdata(p, 4);
    Pushdata(p, 5);
    Pushdata(p, 6);
    printf("\n");
    while (!IsEmlist(p))
    {
        printf("%d ", Popdata(p));
    }
    printf("\n");
    Popdata(p);
    free(p);
    p = NULL;
    return 0;
}

二丶链式队列

逻辑结构:线性结构

存储结构:链式存储

1.创建一个空的队列

2.入列

3.出列

cs 复制代码
#include <stdio.h>
#include <stdlib.h>
typedef int datatype;//重定义数据类型
typedef struct queueLink//重定义结构体名
{
    datatype data;//数据域
    struct queueLink *next;//指针域
} node_t, *node_p;
typedef struct
{
    node_p head;//队头
    node_p tail;//队尾
} node;
node *CreateEmpty()//创建空表
{
    node *p = (node *)malloc(sizeof(node));//开辟一个包含队头队尾的堆区空间
    if (NULL == p)
    {
        printf("Create Empty err");
        return NULL;
    }
    p->head=p->tail=(node_p)malloc(sizeof(node_t));//对队头队尾开辟空间
    if (NULL==p->head)
    {
        printf("head err");
        return NULL;
    }
    p->head->next=NULL;//初始化队列
    return p;
}
int Isempty(node *p)//判空
{
    return p->head==p->tail;
}
int Pushdata(node *p,int data)//入队
{
    node_p p_new=(node_p)malloc(sizeof(node_t));//开辟一个新的堆区空间
    if(NULL==p_new)
    {
        printf("p_new err");
        return -1;
    }
    p_new->data=data;
    p->tail->next=p_new;//连接新节点
    p->tail=p_new;//更新尾节点
    return 0;
}
int Popdata(node *p)//出队
{
    if(Isempty(p))//判空
    {
        printf("popdata err");
        return -1;
    }
    node_p p_del=p->head;
    p->head=p->head->next;
    free(p_del);
    return p->head->data;//返回输出数据
}
int LenLink(node *p)//计算队列长度
{
    int len=0;
    node_p p1=p->head->next;
    while(p1)
    {
        len++;
        p1=p1->next;
    }
    return len;
}
void Cleardata(node *p)//清空队列
{
    while(!Isempty(p))
    Popdata(p);
}
int main(int argc, char const *argv[])
{
    node *p=CreateEmpty();
    Pushdata(p,1);
    Pushdata(p,2);
    Pushdata(p,3);
    Pushdata(p,4);
    Pushdata(p,5);
    Pushdata(p,6);
    printf("len=%d\n",LenLink(p));
    while(!Isempty(p))
    printf("%d ",Popdata(p));
    printf("\n");
    Cleardata(p);
    return 0;
}
相关推荐
AIAdvocate14 分钟前
Pandas_数据结构详解
数据结构·python·pandas
jiao0000140 分钟前
数据结构——队列
c语言·数据结构·算法
kaneki_lh44 分钟前
数据结构 - 栈
数据结构
铁匠匠匠44 分钟前
从零开始学数据结构系列之第六章《排序简介》
c语言·数据结构·经验分享·笔记·学习·开源·课程设计
C-SDN花园GGbond1 小时前
【探索数据结构与算法】插入排序:原理、实现与分析(图文详解)
c语言·开发语言·数据结构·排序算法
CV工程师小林2 小时前
【算法】BFS 系列之边权为 1 的最短路问题
数据结构·c++·算法·leetcode·宽度优先
Navigator_Z3 小时前
数据结构C //线性表(链表)ADT结构及相关函数
c语言·数据结构·算法·链表
还听珊瑚海吗3 小时前
数据结构—栈和队列
数据结构
Aic山鱼3 小时前
【如何高效学习数据结构:构建编程的坚实基石】
数据结构·学习·算法
sjsjs113 小时前
【数据结构-一维差分】力扣1893. 检查是否区域内所有整数都被覆盖
数据结构·算法·leetcode