从零开始学习SLAM(五):极几何与极约束

文章参考计算机视觉life

前备知识

概念

几何关系:

上图中:

极平面(Epipolar plane):点c0, c1, p三点确定的平面;

极点(Epipoles): c0 c1 连线与两个平面的交点

基线(Baseline):c0 c1的连线

极线(Epipolar line):极平面与两像平面的交线

旋转矩阵:R

平移矩阵:t

旋转平移矩阵:T

内参:焦距,归一化坐标

外参:旋转、平移矩阵

向量叉乘和点乘的概念:

叉乘只在三维空间中有定义,比如两个向量 a和b 的叉乘写作 a x b,它是与向量 a, b都垂直的向量,其方向通过右手定则决定。

点乘:

a * b = ||a||* ||b|| *cos(θ)

因此如果两个互相垂直的向量点乘,cos(θ) = 0,点乘结果也为0。

极约束推理

上图表示的是一个运动的相机在两个不同位置的成像,其中:

左右两个平行四边形分别是相机在不同位置的成像平面C0, C1分别是两个位置中相机的光心,也就是针孔相机模型中的针孔P是空间中的一个三维点,p0, p1分别是P点在不同成像平面上对应的像素点。

如果将点P沿着C0-P0所在的直线移动,你会发现P在左边相机的成像一直不变,都是P0,这时候P在右边相机的成像点p1是一直在变化的

现在我们把极平面中C0-C1-P0-P1单拎出来,看下面的图,由于C0-C1-P-P0-P1都是共面的,所以得到结论一:

也就是说 一个同时垂直于C0C1与C1P1的向量也垂直于C0P0

p0, p1都是图像上的二维点,不过,这里我们会把它变成三维的方向向量来考虑我们假设一个归一化的图像平面,该平面上焦距f =1 ,因此我们可以定义在以C0为原点的坐标系下

而在以C1为原点的坐标系下

事实上,你在C0-C1-p0-p1组成的极平面上,保证的方向不变,在极平面上随便移动,结论1中等式都成立。同样的道理,在极平面上,保证

方向不变,在极平面上随便移动,结论1中等式仍然都成立。

p0在以C0为原点的参考坐标系,p1在以C1为原点的参考坐标系,所以我们还是需要转换坐标系。这里我们把所有点的坐标都转换到以C0为原点的坐标系。前面说过这些向量都是方向向量和向量起始位置无关,所以这里坐标系变换只考虑旋转就可以。我们记 R 为从C1坐标系到C0坐标系的旋转矩阵

小白:那么 RP1 就是P1在以C0为原点的C0坐标系了,所以在C0坐标系下结论一可以改写为:



已知:p0TEP1 = 0

根据上一节知识点

从世界坐标系到相机坐标系的公式为:

那么z=1时从相机坐标系到图像坐标系的公式就为, p0 = k-1p0', p1 = k-1p1'

p0TEP1 = 0 ----> p0'T k-TEk-1p1' = p0'T(k-TEk-1)p1' = p0'TFp1'

这里的F 即为基本矩阵 ,E即为本质矩阵,所以本质矩阵和基本矩阵的区别在于,本质矩阵是使用归一化相机坐标系下的点表示极线约束,基本矩阵是使用图像坐标系下的点表示极线约束的。

相关推荐
lingling0092 小时前
扫描仪:工业自动化的智能之眼——迁移科技赋能智能制造新纪元
数码相机
kyle~1 天前
计算机视觉---RealSense深度相机技术
人工智能·数码相机·计算机视觉·机器人·嵌入式·ros·传感器
双翌视觉1 天前
机器视觉对位中的常见模型与技术原理
数码相机·计算机视觉·机器视觉
lingling0092 天前
结构光相机:重塑工业自动化的“智慧之眼”,驱动智能制造新未来
数码相机
啊有礼貌2 天前
【第三章】摄影测量学
数码相机·空中三角测量·摄影测量·倾斜测量
zhongqu_3dnest2 天前
3D建模公司的能力与技术
数码相机·3d·虚拟现实·vr制作公司·3d建模公司
埃菲尔铁塔_CV算法2 天前
基于 TOF 图像高频信息恢复 RGB 图像的原理、应用与实现
人工智能·深度学习·数码相机·算法·目标检测·计算机视觉
lingling00913 天前
2025 年焊接相机十大品牌测评:抗光耐高温解决方案深度解析
数码相机
人类发明了工具14 天前
【机器人-深度估计】双目深度估计原理解析
数码相机·机器人·深度估计·双目深度估计
朝风工作室14 天前
从零理解鱼眼相机的标定与矫正(含 OpenCV 代码与原理讲解)
人工智能·数码相机·opencv