【论文阅读】SegNeXt:重新思考卷积注意力设计

《SegNeXt: Rethinking Convolutional Attention Design for Semantic Segmentation》

原文:https://github.com/Visual-Attention-Network/SegNeXt/blob/main/resources/paper.pdf

源码:https://github.com/Visual-Attention-Network/SegNeXt

1、简介

提出了SegNeXt用于语义分割的简单卷积网络架构,核心是一种比transformer的自注意力更有效的编码方式进行上下文信息的编码,专注分割性能改进的几个组件,设计出了这种新型卷积注意力网络,性能有不小的提升。

2、网络

编码器

CNN中编码器常采用金字塔结构,作者提出了一种类似ViT但是没有自注意力机制的结构,设计了一种多尺度卷积注意模块(MSCA)。MSCA模块中包括:

1、深度卷积:用于聚合局部信息

2、多分支深度条带卷积:用于捕获多尺度上下文信息

3、1*1卷积:建模不同通道之间的关系

解码器

研究了三种简单的解码器结构,a表示SegFormer中的基于MLP的结构;b是直接将编码器的输出作为解码器的输入,比如ASPP、PSP和DANet等;c是作者采用的结构,聚合了最后三层的特征,并使用轻量级模块建模全局上下文。与SegFormer(聚合第一到第四阶段的特征)不同,作者只在解码器聚合了最后三个层的特征,主要原因是第一阶段的特征包含过多低级特征影像模型性能。下面作者证明SegNeXt优于基于Transformer的SegFormer和HRFormer。

部分实验结果

遥感数据集iSAID

模型参数量及计算量

相关推荐
@––––––5 小时前
论文阅读笔记:π 0 : A Vision-Language-Action Flow Model for General Robot Control
论文阅读·笔记
万里鹏程转瞬至6 小时前
论文阅读 | SLA:sparse–linear attion视频生成95%稀疏度FLOPs降低20倍
论文阅读·深度学习·aigc
gorgeous(๑>؂<๑)7 小时前
【ICLR26-Oral Paper-字节跳动】推理即表征:重新思考图像质量评估中的视觉强化学习
人工智能·深度学习·神经网络·机器学习·计算机视觉
啊阿狸不会拉杆7 小时前
《计算机视觉:模型、学习和推理》第 7 章-复杂数据密度建模
人工智能·python·学习·算法·计算机视觉·t分布·复杂数据密度建模
开开心心就好8 小时前
免费音频转文字工具,绿色版离线多模型可用
人工智能·windows·计算机视觉·计算机外设·ocr·excel·语音识别
咚咚王者9 小时前
人工智能之视觉领域 计算机视觉 第十二章 视频目标跟踪
人工智能·计算机视觉·音视频
啊阿狸不会拉杆9 小时前
《计算机视觉:模型、学习和推理》第 6 章-视觉学习和推理
人工智能·学习·算法·机器学习·计算机视觉·生成模型·判别模型
Y前进四10 小时前
ICLR 2026 Oral论文阅读 (21篇 对齐、公平、安全、隐私及社会考量)
论文阅读·人工智能
芯门10 小时前
FPGA商用级ISP(三):自动白平衡(AWB)算法实现与 FPGA 架构解析
图像处理·计算机视觉·fpga开发
挂科边缘21 小时前
YOLOv12环境配置,手把手教你使用YOLOv12训练自己的数据集和推理(附YOLOv12网络结构图),全文最详细教程
人工智能·深度学习·yolo·目标检测·计算机视觉·yolov12