使用LLaMA-Factory微调Qwen2.5-VL-3B 的目标检测任务-数据集格式转换(voc 转 ShareGPT)

一、LLaMA-Factory + Qwen2.5-VL + ShareGPT 格式要求

ShareGPT 格式就是多轮对话的 list,每条数据如下:

复制代码
[
  {
    "conversations": [
      {"from": "user", "value": "<image>\n请标注图片中的所有目标及其类别和位置。"},
      {"from": "assistant", "value": "[{\"category\": \"person\", \"bbox\": [50, 100, 200, 300]}]"}
    ],
    "image": "相对路径/xxx.jpg"
  },
  ...
]

注意:

  • 字段是 "from" 而不是 "role"

  • 图片路径通常为相对路径,实际训练时配合 --image_folder 参数;

  • 你可以有任意多轮(这里只做单轮QA,适合目标检测)。

二、VOC批量转ShareGPT格式完整脚本

因为我的标注信息.xml和原始图像在同一个目录下,还有嵌套的文件夹;

下面脚本会递归遍历你的VOC根目录,自动配对xml和图片,生成ShareGPT格式的JSON。

复制代码
import os
import json
import xml.etree.ElementTree as ET

def find_files_recursive(root_dir, exts):
    file_list = []
    for root, dirs, files in os.walk(root_dir):
        for file in files:
            if file.lower().endswith(exts):
                abs_path = os.path.join(root, file)
                rel_path = os.path.relpath(abs_path, root_dir)
                file_list.append(rel_path)
    return file_list

def get_img_path(xml_path, all_img_paths):
    xml_base = os.path.splitext(xml_path)[0]
    for ext in ['.jpg', '.jpeg', '.png', '.bmp']:
        img_path = xml_base + ext
        if img_path in all_img_paths:
            return img_path
    return None

def voc_to_sharegpt(voc_data_dir, output_json_path):
    xml_files = find_files_recursive(voc_data_dir, ('.xml',))
    img_files = find_files_recursive(voc_data_dir, ('.jpg', '.jpeg', '.png', '.bmp'))
    img_files_set = set(img_files)

    dataset = []
    for xml_rel in xml_files:
        xml_abs = os.path.join(voc_data_dir, xml_rel)
        img_rel = get_img_path(xml_rel, img_files_set)
        if img_rel is None:
            continue

        tree = ET.parse(xml_abs)
        root = tree.getroot()
        objs = []
        for obj in root.findall('object'):
            name = obj.find('name').text
            bbox = obj.find('bndbox')
            xmin = int(float(bbox.find('xmin').text))
            ymin = int(float(bbox.find('ymin').text))
            xmax = int(float(bbox.find('xmax').text))
            ymax = int(float(bbox.find('ymax').text))
            objs.append({'category': name, 'bbox': [xmin, ymin, xmax, ymax]})
        if not objs:
            continue

        # ShareGPT 格式(提示词根据自己的需求修改)
        entry = {
            "conversations": [
                {"from": "human", "value": "<image>\n请标注图片中的所有目标及其类别和位置。"},
                {"from": "gpt", "value": json.dumps(objs, ensure_ascii=False)}
            ],
            "images": data_dir +"/"+img_rel.replace("\\", "/")
        }
        dataset.append(entry)

    with open(output_json_path, 'w', encoding='utf-8') as f:
        json.dump(dataset, f, ensure_ascii=False, indent=2)
    print(f"转换完成!共 {len(dataset)} 条,输出至 {output_json_path}")

# 示例用法:假设VOC数据在 ./myvocdata
if __name__ == '__main__':
    voc_data_dir="./myvocdata"
    output_json_path="sharegpt_qwen25vl.json"
    voc_to_sharegpt(voc_data_dir,output_json_path)

然后运行该python脚本会生成 sharegpt_qwen25vl.json文件,截取部分如下所示:

相关推荐
std78796 小时前
微软Visual Studio 2026正式登场,AI融入开发核心操作体验更流畅
人工智能·microsoft·visual studio
美狐美颜SDK开放平台6 小时前
什么是美颜sdk?美型功能开发与用户体验优化实战
人工智能·算法·ux·直播美颜sdk·第三方美颜sdk·视频美颜sdk
Mxsoft6196 小时前
电力绝缘子污秽多源感知与自适应清洁策略优化
人工智能
悟空CRM服务6 小时前
开源的力量:如何用开源技术构建高效IT架构?
java·人工智能·架构·开源·开源软件
机器人行业研究员6 小时前
机器人“小脑”萎缩,何谈“大脑”智慧?六维力/关节力传感器才是“救命稻草”
人工智能·机器人·人机交互·六维力传感器·关节力传感器
互联网科技看点6 小时前
多场景服务机器人代理品牌深度解析
人工智能·机器人
500佰6 小时前
Copilot、Codeium 软件开发领域的代表性工具背后的技术
人工智能·github·gpt-3·copilot·个人开发·xcode
Francek Chen7 小时前
【自然语言处理】预训练06:子词嵌入
人工智能·pytorch·深度学习·自然语言处理·子词嵌入
微盛企微增长小知识7 小时前
企业微信AI怎么用?从智能表格落地看如何提升运营效率
大数据·人工智能·企业微信
私域实战笔记7 小时前
如何选择企业微信SCRM?2025年3个选型参考维度
大数据·人工智能·企业微信·scrm·企业微信scrm