使用LLaMA-Factory微调Qwen2.5-VL-3B 的目标检测任务-数据集格式转换(voc 转 ShareGPT)

一、LLaMA-Factory + Qwen2.5-VL + ShareGPT 格式要求

ShareGPT 格式就是多轮对话的 list,每条数据如下:

复制代码
[
  {
    "conversations": [
      {"from": "user", "value": "<image>\n请标注图片中的所有目标及其类别和位置。"},
      {"from": "assistant", "value": "[{\"category\": \"person\", \"bbox\": [50, 100, 200, 300]}]"}
    ],
    "image": "相对路径/xxx.jpg"
  },
  ...
]

注意:

  • 字段是 "from" 而不是 "role"

  • 图片路径通常为相对路径,实际训练时配合 --image_folder 参数;

  • 你可以有任意多轮(这里只做单轮QA,适合目标检测)。

二、VOC批量转ShareGPT格式完整脚本

因为我的标注信息.xml和原始图像在同一个目录下,还有嵌套的文件夹;

下面脚本会递归遍历你的VOC根目录,自动配对xml和图片,生成ShareGPT格式的JSON。

复制代码
import os
import json
import xml.etree.ElementTree as ET

def find_files_recursive(root_dir, exts):
    file_list = []
    for root, dirs, files in os.walk(root_dir):
        for file in files:
            if file.lower().endswith(exts):
                abs_path = os.path.join(root, file)
                rel_path = os.path.relpath(abs_path, root_dir)
                file_list.append(rel_path)
    return file_list

def get_img_path(xml_path, all_img_paths):
    xml_base = os.path.splitext(xml_path)[0]
    for ext in ['.jpg', '.jpeg', '.png', '.bmp']:
        img_path = xml_base + ext
        if img_path in all_img_paths:
            return img_path
    return None

def voc_to_sharegpt(voc_data_dir, output_json_path):
    xml_files = find_files_recursive(voc_data_dir, ('.xml',))
    img_files = find_files_recursive(voc_data_dir, ('.jpg', '.jpeg', '.png', '.bmp'))
    img_files_set = set(img_files)

    dataset = []
    for xml_rel in xml_files:
        xml_abs = os.path.join(voc_data_dir, xml_rel)
        img_rel = get_img_path(xml_rel, img_files_set)
        if img_rel is None:
            continue

        tree = ET.parse(xml_abs)
        root = tree.getroot()
        objs = []
        for obj in root.findall('object'):
            name = obj.find('name').text
            bbox = obj.find('bndbox')
            xmin = int(float(bbox.find('xmin').text))
            ymin = int(float(bbox.find('ymin').text))
            xmax = int(float(bbox.find('xmax').text))
            ymax = int(float(bbox.find('ymax').text))
            objs.append({'category': name, 'bbox': [xmin, ymin, xmax, ymax]})
        if not objs:
            continue

        # ShareGPT 格式(提示词根据自己的需求修改)
        entry = {
            "conversations": [
                {"from": "human", "value": "<image>\n请标注图片中的所有目标及其类别和位置。"},
                {"from": "gpt", "value": json.dumps(objs, ensure_ascii=False)}
            ],
            "images": data_dir +"/"+img_rel.replace("\\", "/")
        }
        dataset.append(entry)

    with open(output_json_path, 'w', encoding='utf-8') as f:
        json.dump(dataset, f, ensure_ascii=False, indent=2)
    print(f"转换完成!共 {len(dataset)} 条,输出至 {output_json_path}")

# 示例用法:假设VOC数据在 ./myvocdata
if __name__ == '__main__':
    voc_data_dir="./myvocdata"
    output_json_path="sharegpt_qwen25vl.json"
    voc_to_sharegpt(voc_data_dir,output_json_path)

然后运行该python脚本会生成 sharegpt_qwen25vl.json文件,截取部分如下所示:

相关推荐
不枯石7 分钟前
Python计算点云的欧式、马氏、最近邻、平均、倒角距离(Chamfer Distance)
python·计算机视觉
TGC达成共识33 分钟前
解锁处暑健康生活
人工智能·科技·其他·安全·生活·美食·风景
猫头虎1 小时前
什么是AI+?什么是人工智能+?
人工智能·ai·prompt·aigc·数据集·ai编程·mcp
聚客AI1 小时前
💡为什么你的RAG回答总是胡言乱语?致命瓶颈在数据预处理层
人工智能·langchain·llm
彭军辉1 小时前
什么是AI宠物
人工智能
siliconstorm.ai1 小时前
穿越周期:AIoT产业的真实突破口与实践路径
大数据·人工智能
爱喝奶茶的企鹅1 小时前
Ethan独立开发新品速递 | 2025-08-27
人工智能
武子康2 小时前
AI-调查研究-59-机器人 行业职业地图:发展路径、技能要求与薪资全解读
人工智能·gpt·程序人生·ai·职场和发展·机器人·个人开发
大视码垛机2 小时前
大视码垛机器人:以技术优势撬动工业码垛升级
人工智能·机器人·自动化·制造