勇闯机器学习(第四关-文本特征提取)

以下内容,皆为本人原创,制作不易,首先感谢各位阅读。

|-----------------|------------------------------------------------------------------------------------|
| 第一关:机器学习概念和流程 | http://t.csdnimg.cn/IuHh4 |
| 第二关:数据集的使用 | http://t.csdnimg.cn/2jsdi |
| 第三关:特征工程-字典特征提取 | http://t.csdnimg.cn/ZpMto |

一.文本特征提取

紧接上章节,这章节我们说如何将文本数据转为二维数组。方法如下:

作用:对文本数据进行特征值化

sklearn.feature_extraction.text.CountVectorizer(stop_words=[]) 返回词频矩阵

CountVectorizer.fit_transform(X) X:文本或者包含文本字符串的可迭代对象

返回值:返回sparse矩阵

CountVectorizer.inverse_transform(X) X:array数组或者sparse矩阵

返回值:转换之前数据格

CountVectorizer.get_feature_names() 返回值:单词列表

可能直接列出方法,有点困难,直接看代码和运行结果。

python 复制代码
from sklearn.feature_extraction.text import CountVectorizer

def count_demo():
    # 文本数据
    data = ['life is short, i want to study python',
           'life is long, i dislike c++']
    # 文本特征提取CountVectorizer
    # 实例化一个转换器类
    transfer = CountVectorizer()

    # 调用fit_transform
    data_new = transfer.fit_transform(data)
    print("data_new\n", data_new)
if __name__ == '__main__':
    count_demo()

我们可以看到这个data转换后的特征值不是特征数组,那我可以加一个toarray()方法。

观察第一个print里面,加了toarray()方法,就可以返回二维数组

python 复制代码
from sklearn.feature_extraction.text import CountVectorizer

def count_demo():
    # 文本数据
    data = ['life is short, i want to study python',
           'life is long, i dislike c++']
    # 文本特征提取CountVectorizer统计每个样本特征词出现的个数
    # 实例化一个转换器类
    transfer = CountVectorizer()

    # 调用fit_transform
    data_new = transfer.fit_transform(data)
    print("data_new\n", data_new.toarray())
    print("feature_names\n", transfer.get_feature_names_out())
if __name__ == '__main__':
    count_demo()

总结:

可以看到返回的二维数组中,是一些单词,也就是特征值。那里面的0和1是什么意思呢?

**CountVectorizer统计每个样本特征值出现的个数。**我们可以看到二维列表,它里面的元素是一维列表。一维列表里面的元素跟特征值的数量都是一样的,都是9个。这个0和1表示的是对应的。0代表这一组列表里没有这个单词,1则代表有一个。比如说dislike不在我们data的第一句话里,所以返回的二维列表里第一个元素就是0,代表第一句话没有这个词。

二维列表里面的数字,是特征值出现的次数。

二.中文数据特征提取

有了上面的基础,那我们直接看代码和运行结果,变化的地方就是数据变成中文了。

python 复制代码
from sklearn.feature_extraction.text import CountVectorizer

def count_chinese_demo():
    #中文文本数据
    data = ['我喜欢你', '你喜欢我吗']

    # 实例化转换器类
    transfer = CountVectorizer()

    data_new = transfer.fit_transform(data)
    print("data_new\n", data_new)
    print("feature_name\n", transfer.get_feature_names_out())

if __name__ == "__main__":
    count_chinese_demo()
内心感想:
特征值为什么是一句话呢, 像我们之前的英文句子(是由一个个英语单词组成,并且单词之间有空格),所以很轻易的提取。而我们的中文都是在一起的。所以就把整个句子当做特征值了。

将中文句子中间加几个空格就可以了。将数据换成这个。

python 复制代码
    data = ['我 喜欢 你', '你 喜欢 我吗']

OK,这次特征值,就发生了变化。

感谢大家的观看,今天的分享就到这里。

相关推荐
阿里云大数据AI技术2 分钟前
【新模型速递】PAI-Model Gallery云上一键部署DeepSeek-V3.2模型
人工智能
阿恩.7709 分钟前
2026年1月最新计算机、人工智能、经济管理国际会议:选对会议 = 论文成功率翻倍
人工智能·经验分享·笔记·计算机网络·金融·区块链
高-老师12 分钟前
WRF模式与Python融合技术在多领域中的应用及精美绘图
人工智能·python·wrf模式
xinyu_Jina23 分钟前
ikTok Watermark Remover:客户端指纹、行为建模与自动化逆向工程
前端·人工智能·程序人生·信息可视化
通义灵码34 分钟前
Qoder 全形态产品家族正式发布,并开源 Agentic Coding 产品耐用度评测集
人工智能·开源·ai编程
大白的编程笔记34 分钟前
推理(Inference)系统解释
人工智能
LeeZhao@39 分钟前
【狂飙全模态】狂飙AGI-智能答疑助手
数据库·人工智能·redis·语言模型·aigc·agi
AI浩43 分钟前
DeepSeek-V3.2:推动开源大型语言模型的前沿发展
人工智能·语言模型·自然语言处理
无代码专家1 小时前
设备巡检数字化解决方案:构建高效闭环管理体系
java·大数据·人工智能
新智元1 小时前
奥特曼怕了!GPT-5.5「大蒜」决战谷歌,红色警报紧急拉响
人工智能·openai