设计模式之单例模式

**单例模式(Singleton Pattern)**是 Java 中最简单的设计模式之一。这种类型的设计模式属于创建型模式,它提供了一种创建对象的最佳方式。这种模式涉及到一个单一的类,该类负责创建自己的对象,同时确保只有单个对象被创建。这个类提供了一种访问其唯一的对象的方式,可以直接访问,不需要实例化该类的对象。

1. 单例模式的分类

单例设计模式分类两种:

​ 饿汉式:类加载就会导致该单实例对象被创建

​ 懒汉式:类加载不会导致该单实例对象被创建,而是首次使用该对象时才会创建

2. 单例模式的实现

2.1 饿汉式

  1. 静态变量方式

该方式在成员位置声明Singleton类型的静态变量,并创建Singleton类的对象instance。instance对象是随着类的加载而创建的。如果该对象足够大的话,而一直没有使用就会造成内存的浪费。

java 复制代码
/**
 * 饿汉式
 *      静态变量创建类的对象
 */
public class Singleton {
    //私有构造方法
    private Singleton() {}

    //在成员位置创建该类的对象
    private static Singleton instance = new Singleton();

    //对外提供静态方法获取该对象
    public static Singleton getInstance() {
        return instance;
    }
}
  1. 静态代码块方式

该方式在成员位置声明Singleton类型的静态变量,而对象的创建是在静态代码块中,也是对着类的加载而创建。所以和饿汉式的方式1基本上一样,当然该方式也存在内存浪费问题。

java 复制代码
/**
 * 恶汉式
 *      在静态代码块中创建该类对象
 */
public class Singleton {

    //私有构造方法
    private Singleton() {}

    //在成员位置创建该类的对象
    private static Singleton instance;

    static {
        instance = new Singleton();
    }

    //对外提供静态方法获取该对象
    public static Singleton getInstance() {
        return instance;
    }
}
  1. 枚举方式

枚举类实现单例模式是极力推荐的单例实现模式,因为枚举类型是线程安全的,并且只会装载一次 ,设计者充分的利用了枚举的这个特性来实现单例模式,枚举的写法非常简单,而且枚举类型是所用单例实现中唯一一种不会被破坏的单例实现模式。

java 复制代码
/**
 * 枚举方式
 */
public enum Singleton {
    INSTANCE;
}

2.2 懒汉式

  1. 线程不安全方式

    java 复制代码
    /**
     * 懒汉式
     *  线程不安全
     */
    public class Singleton {
        //私有构造方法
        private Singleton() {}
    
        //在成员位置创建该类的对象
        private static Singleton instance;
    
        //对外提供静态方法获取该对象
        public static Singleton getInstance() {
    
            if(instance == null) {
                instance = new Singleton();
            }
            return instance;
        }
    }

    ​ 从上面代码我们可以看出该方式在成员位置声明Singleton类型的静态变量,并没有进行对象的赋值操作,那么什么时候赋值的呢?当调用getInstance()方法获取Singleton类的对象的时候才创建Singleton类的对象,这样就实现了懒加载的效果。但是,如果是多线程环境,会出现线程安全问题。

  2. synchronized同步方法方式

    java 复制代码
    /**
     * 懒汉式
     *  线程安全
     */
    public class Singleton {
        //私有构造方法
        private Singleton() {}
    
        //在成员位置创建该类的对象
        private static Singleton instance;
    
        //对外提供静态方法获取该对象
        public static synchronized Singleton getInstance() {
    
            if(instance == null) {
                instance = new Singleton();
            }
            return instance;
        }
    }

    ​ 该方式也实现了懒加载效果,同时又解决了线程安全问题。但是在getInstance()方法上添加了synchronized关键字,但加锁会导致该方法的执行效果特别低。从上面代码我们可以看出,其实就是在初始化instance的时候才会出现线程安全问题,一旦初始化完成就不存在了。

  3. 双重判定锁方式

    再来讨论一下懒汉模式中加锁的问题,对于 getInstance() 方法来说,绝大部分的操作都是读操作,读操作是线程安全的,所以我们没必让每个线程必须持有锁才能调用该方法,我们需要调整加锁的时机。由此也产生了一种新的实现模式:双重检查锁模式

    java 复制代码
    /**
     * 双重检查方式
     */
    public class Singleton { 
    
        //私有构造方法
        private Singleton() {}
    
        private static Singleton instance;
    
       //对外提供静态方法获取该对象
        public static Singleton getInstance() {
    		//第一次判断,如果instance不为null,不进入抢锁阶段,直接返回实例
            if(instance == null) {
                synchronized (Singleton.class) {
                    //抢到锁之后再次判断是否为null
                    if(instance == null) {
                        instance = new Singleton();
                    }
                }
            }
            return instance;
        }
    }

    双重判定锁模式是一种非常好的单例实现模式,解决了单例、性能、线程安全问题,上面的双重检测锁模式看上去完美无缺,其实是存在问题,在多线程的情况下,可能会出现空指针问题,出现问题的原因是JVM在实例化对象的时候会进行优化和指令重排序操作。

    要解决双重检查锁模式带来空指针异常的问题,还需要使用 volatile 关键字, volatile 关键字来保证可见性和有序性。

    java 复制代码
    /**
     * 双重检查方式
     */
    public class Singleton {
    
        //私有构造方法
        private Singleton() {}
    
        private static volatile Singleton instance;
    
       //对外提供静态方法获取该对象
        public static Singleton getInstance() {
    		//第一次判断,如果instance不为null,不进入抢锁阶段,直接返回实际
            if(instance == null) {
                synchronized (Singleton.class) {
                    //抢到锁之后再次判断是否为空
                    if(instance == null) {
                        instance = new Singleton();
                    }
                }
            }
            return instance;
        }
    }

    添加 volatile 关键字之后的双重检查锁模式是一种比较好的单例实现模式,能够保证在多线程的情况下线程安全也不会有性能问题。

  4. 静态内部类方式

静态内部类单例模式中实例由内部类创建,由于 JVM 在加载外部类的过程中, 是不会加载静态内部类的, 只有内部类的属性/方法被调用时才会被加载, 并初始化其静态属性。静态属性由于被 static 修饰,保证只被实例化一次,并且严格保证实例化顺序。

第一次加载Singleton类时不会去初始化INSTANCE,只有第一次调用getInstance,虚拟机加载SingletonHolder并初始化INSTANCE,这样不仅能确保线程安全,也能保证 Singleton 类的唯一性。

java 复制代码
/**
 * 静态内部类方式
 */
public class Singleton {

    //私有构造方法
    private Singleton() {}

    private static class SingletonHolder {
        private static final Singleton INSTANCE = new Singleton();
    }

    //对外提供静态方法获取该对象
    public static Singleton getInstance() {
        return SingletonHolder.INSTANCE;
    }
}

​ 静态内部类单例模式是一种优秀的单例模式,是开源项目中比较常用的一种单例模式。在没有加任何锁的情况下,保证了多线程下的安全,并且没有任何性能影响和空间的浪费。

相关推荐
大圣数据星球2 小时前
Fluss 写入数据湖实战
大数据·设计模式·flink
思忖小下3 小时前
梳理你的思路(从OOP到架构设计)_设计模式Template Method模式
设计模式·模板方法模式·eit
思忖小下13 小时前
梳理你的思路(从OOP到架构设计)_简介设计模式
设计模式·架构·eit
liyinuo201715 小时前
嵌入式(单片机方向)面试题总结
嵌入式硬件·设计模式·面试·设计规范
aaasssdddd9618 小时前
C++的封装(十四):《设计模式》这本书
数据结构·c++·设计模式
T1an-118 小时前
设计模式之【观察者模式】
观察者模式·设计模式
思忖小下19 小时前
梳理你的思路(从OOP到架构设计)_设计模式Factory Method模式
设计模式·工厂方法模式·eit
霁月风20 小时前
设计模式——工厂方法模式
c++·设计模式·工厂方法模式
发飙的蜗牛'1 天前
23种设计模式
android·java·设计模式
重生之我在字节当程序员1 天前
如何实现单例模式?
单例模式