方差:理解数据的离散程度

方差:理解数据的离散程度



文章目录


引言

方差是统计学和数据分析中的重要概念,用于量化数据集中各个观测值与平均值之间的差异程度。理解方差有助于我们更好地分析数据,并在金融、科学研究、机器学习等领域中发挥关键作用。

在计算方差时,有两种常见的方法:有偏估计和无偏估计。有偏估计 通常用于描述当前样本本身的离散程度,而无偏估计则是为了通过样本数据来推断总体特性。了解这两种估计方法的区别对于正确地使用方差至关重要。

样本与总体的关系

在统计学中,总体(Population)是指研究对象的全体,它包含了我们感兴趣的所有个体或观测值。然而,由于时间、成本和其他资源的限制,通常无法对整个总体进行全面研究。因此,研究人员从总体中抽取一个较小的部分,这个部分称为样本(Sample)。样本是总体的一个子集,代表了总体的某些特征。通过对样本进行分析,研究人员可以推断总体的特性。

样本数据是通过采样(Sampling)过程得来的,这个过程可以是随机的,也可以是系统的。采样方法的选择会影响样本的代表性和推断的准确性。因为样本只能部分反映总体的特性,所以在利用样本估计总体特性时,需要特别注意估计方法的选择。

什么是方差?

方差(Variance)是用来度量数据集中各观测值与其平均值之间差异的统计量。方差越大,表示数据点之间的差异越大;反之,方差越小,表示数据点之间的差异越小。

方差的数学公式

对于包含 n n n 个观测值 x 1 , x 2 , ... , x n x_1, x_2, \ldots, x_n x1,x2,...,xn 的样本集,方差 σ 2 \sigma^2 σ2 的公式为:

σ 2 = 1 n ∑ i = 1 n ( x i − μ ) 2 \sigma^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \mu)^2 σ2=n1i=1∑n(xi−μ)2

其中, μ \mu μ 是样本均值,定义为所有观测值的平均值: μ = 1 n ∑ i = 1 n x i \mu = \frac{1}{n} \sum_{i=1}^{n} x_i μ=n1∑i=1nxi。

有偏估计 vs. 无偏估计

  • 有偏估计:使用分母为 (n) 的公式计算样本方差,用于描述当前样本数据的离散程度。适合在仅关注样本本身特性、不考虑推断总体方差的情况下使用。

  • 无偏估计:使用分母为 (n-1) 的公式计算样本方差,常用于通过样本数据推断总体方差。通过调整分母的值,补偿样本均值可能带来的偏差,使得估计值更接近于总体方差。

方差的计算示例

假设有一个包含五个观测值的数据集: 2 , 4 , 6 , 8 , 10 2, 4, 6, 8, 10 2,4,6,8,10,计算该数据集的方差如下:

  1. 计算均值 :
    μ = 2 + 4 + 6 + 8 + 10 5 = 6 \mu = \frac{2 + 4 + 6 + 8 + 10}{5} = 6 μ=52+4+6+8+10=6

  2. 计算每个观测值与均值之差的平方:

    • ( 2 − 6 ) 2 = 16 (2 - 6)^2 = 16 (2−6)2=16
    • ( 4 − 6 ) 2 = 4 (4 - 6)^2 = 4 (4−6)2=4
    • ( 6 − 6 ) 2 = 0 (6 - 6)^2 = 0 (6−6)2=0
    • ( 8 − 6 ) 2 = 4 (8 - 6)^2 = 4 (8−6)2=4
    • ( 10 − 6 ) 2 = 16 (10 - 6)^2 = 16 (10−6)2=16
  3. 计算方差 :
    σ 2 = 16 + 4 + 0 + 4 + 16 5 = 8 \sigma^2 = \frac{16 + 4 + 0 + 4 + 16}{5} = 8 σ2=516+4+0+4+16=8

因此,该数据集的方差为 8。

无偏估计的推导与重要性

从有偏估计到无偏估计的推导

样本方差的有偏估计公式为:

S b i a s e d 2 = 1 n ∑ i = 1 n ( X i − X ˉ ) 2 S^2_{biased} = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X})^2 Sbiased2=n1i=1∑n(Xi−Xˉ)2

计算期望值时发现:

E ( S b i a s e d 2 ) = σ 2 ⋅ n − 1 n E(S^2_{biased}) = \sigma^2 \cdot \frac{n-1}{n} E(Sbiased2)=σ2⋅nn−1

这表明有偏估计低估了总体方差。为了修正这一偏差,我们引入无偏估计,公式为:

S u n b i a s e d 2 = n n − 1 ⋅ S b i a s e d 2 = 1 n − 1 ∑ i = 1 n ( X i − X ˉ ) 2 S^2_{unbiased} = \frac{n}{n-1} \cdot S^2_{biased} = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2 Sunbiased2=n−1n⋅Sbiased2=n−11i=1∑n(Xi−Xˉ)2

经过推导,得到:

E ( S u n b i a s e d 2 ) = σ 2 E(S^2_{unbiased}) = \sigma^2 E(Sunbiased2)=σ2

这证明了无偏估计的期望值正好等于总体方差,保证了估计的准确性。

Bessel校正的原因

Bessel校正通过将分母改为 n − 1 n-1 n−1 来调整样本方差的估计,确保其无偏。这种调整考虑了样本均值与总体均值的差异,使得估计更接近真实的总体方差。

是否总是需要无偏估计?

如果只关注当前样本的离散程度而不是推断总体方差,可以直接使用样本方差,即采用分母为 n n n 的公式。这种情况下,无需进行无偏估计的校正,因为目标只是描述样本本身而非推断总体特性。

方差的应用场景

  1. 金融领域:衡量资产价格波动性。
  2. 质量控制:监测生产过程中的一致性。
  3. 社会科学:评估调查数据的可靠性。
  4. 生物学:分析实验数据的变异性。
  5. 机器学习:识别模型训练中的重要特征。

结论

方差是描述数据离散程度的关键工具。在估计样本方差时,使用无偏估计能更准确地反映总体方差。如果仅关心样本本身的特性,无需进行无偏估计。

相关推荐
阿_旭1 分钟前
TensorFlow构建CNN卷积神经网络模型的基本步骤:数据处理、模型构建、模型训练
人工智能·深度学习·cnn·tensorflow
羊小猪~~2 分钟前
tensorflow案例7--数据增强与测试集, 训练集, 验证集的构建
人工智能·python·深度学习·机器学习·cnn·tensorflow·neo4j
极客代码9 分钟前
【Python TensorFlow】进阶指南(续篇三)
开发语言·人工智能·python·深度学习·tensorflow
zhangfeng11339 分钟前
pytorch 的交叉熵函数,多分类,二分类
人工智能·pytorch·分类
Seeklike10 分钟前
11.22 深度学习-pytorch自动微分
人工智能·pytorch·深度学习
庞传奇11 分钟前
TensorFlow 的基本概念和使用场景
人工智能·python·tensorflow
华清远见IT开放实验室18 分钟前
【每天学点AI】实战图像增强技术在人工智能图像处理中的应用
图像处理·人工智能·python·opencv·计算机视觉
OpenVINO 中文社区27 分钟前
实战精选|如何使用 OpenVINO™ 在 ElectronJS 中创建桌面应用程序
人工智能·openvino
只怕自己不够好31 分钟前
《OpenCV 图像缩放、翻转与变换全攻略:从基础操作到高级应用实战》
人工智能·opencv·计算机视觉
网络研究院37 分钟前
国土安全部发布关键基础设施安全人工智能框架
人工智能·安全·框架·关键基础设施