Azure OpenAI citations with message correlation

题意:"Azure OpenAI 引用与消息关联"

问题背景:

I am trying out Azure OpenAI with my own data. The data is uploaded to Azure Blob Storage and indexed for use with Azure AI search

"我正在尝试使用自己的数据进行 Azure OpenAI。数据已上传到 Azure Blob 存储并为 Azure AI 搜索进行了索引。"

I do a call to the endpoint in the form of POST {endpoint}/openai/deployments/{deployment-id}/chat/completions?api-version={api-version}, as referenced here.

"我对端点进行了一次调用,形式为 `POST {endpoint}/openai/deployments/{deployment-id}/chat/completions?api-version={api-version}`,就像这里所引用的。"

However, in the response I cannot figure out how the choices[0]['message']['context']['citations'] field correspond to the choices[0]['message']['content'].

"然而,在响应中,我无法弄清楚 `choices[0]['message']['context']['citations']` 字段是如何与 `choices[0]['message']['content']` 对应的。"

For example, I can have a content as something like:

"例如,我的 `content` 可能是这样的:"

cs 复制代码
I have a pear [doc1][doc2]. I have an apple [doc1][doc3].

However, in my citations it looks like:

"然而,在我的 `citations` 中,它看起来像这样:"

cs 复制代码
citations[0].filepath == 'file1.pdf'
citations[1].filepath == 'file2.pdf'
citations[2].filepath == 'file1.pdf'
citations[3].filepath == 'file3.pdf'
citations[4].filepath == 'file4.pdf'

In summary, my question is whether if there is some sort of mapping from doc as shown in the message to the citations.filepath.

"总而言之,我的问题是是否存在一种映射,将消息中显示的 `doc` 与 `citations.filepath` 关联起来。"

问题解决:

Actually, it is not about the length of the citations; it is about how many times the file is referred.

"实际上,这与 `citations` 的长度无关,而是与文件被引用的次数有关。"

If you observe clearly, you can see 'file1.pdf' is referred twice, so mappings will be based on the first appearance and reuse of docs like below:

"如果你仔细观察,可以看到 `file1.pdf` 被引用了两次,因此映射将基于第一次出现和重用文档,如下所示:"

  • doc1 -> citations[0] (file1.pdf).
  • doc2 -> citations[1] (file2.pdf).
  • Reuse of doc1 -> Refers back to the first document (citations[2], file1.pdf).
  • doc3 -> citations[3] (file3.pdf).

Use the code below to get mappings and use it in the content.

"使用下面的代码来获取映射,并在内容中使用它。"

cs 复制代码
import re

def map_citations(content, citations):
    
    pattern = re.compile(r'\[doc(\d+)\]')
    segments = pattern.split(content)
    
    doc_numbers = []
    for segment in segments:
        if segment.isdigit():
            doc_numbers.append(int(segment))
    
    

    doc_to_file_map = {}
    for i, doc_num in enumerate(doc_numbers):
        doc_to_file_map[f'doc{doc_num}'] = citations[i]['filepath']

    print(doc_to_file_map)
    
    def replace_placeholder(match):
        doc_num = match.group(1)
        return f"[{doc_to_file_map[f'doc{doc_num}']}]"
    
    mapped_content = pattern.sub(replace_placeholder, content)
    
    return mapped_content

content = "I have a pear [doc1][doc2]. I have an apple [doc1][doc3]."
citations = [
    {'filepath': 'file1.pdf'},
    {'filepath': 'file2.pdf'},
    {'filepath': 'file1.pdf'},
    {'filepath': 'file3.pdf'},
    {'filepath': 'file4.pdf'}
]

mapped_content = map_citations(content, citations)
print(mapped_content)
相关推荐
weixin79893765432...2 小时前
前端开发者如何拥抱 AI-Agent(科普)
人工智能·ai
菠菠萝宝4 小时前
【Java手搓RAGFlow】-3- 用户认证与权限管理
java·开发语言·人工智能·llm·openai·qwen·rag
带刺的坐椅12 小时前
Solon AI 开发学习 - 1导引
java·ai·openai·solon·mcp
机器之心14 小时前
真机RL!最强VLA模型π*0.6来了,机器人在办公室开起咖啡厅
人工智能·openai
机器之心14 小时前
马斯克Grok 4.1低调发布!通用能力碾压其他一切模型
人工智能·openai
2501_9395086417 小时前
Python中lambda函数与def函数的区别及应用场景
azure
哥布林学者18 小时前
吴恩达深度学习课程二: 改善深层神经网络 第三周:超参数调整,批量标准化和编程框架(三)多值预测与多分类
深度学习·ai
天草二十六_简村人19 小时前
dify中级入门示例--使用知识库搭建智能客服机器人
后端·ai·云原生·ai编程
SEO_juper20 小时前
谷歌搜索全面AI化:SGE如何重构我们的搜索体验与营销格局
人工智能·ai·重构·数字营销
前端小东1 天前
Langchain Template 全面指南
langchain·openai