数学基础 -- 线性代数之行列式不变性推导

行列式不变性的推导

我们要证明:给矩阵的一行(或列)加上另一行(或列)的倍数,这种操作不会改变行列式的值。

问题描述

假设我们有一个矩阵 A A A,其大小为 3 × 3 3 \times 3 3×3,如果我们将其第 1 行加上第 2 行的倍数,得到新的矩阵 A ′ A' A′。我们需要证明矩阵 A A A 的行列式和矩阵 A ′ A' A′ 的行列式是相等的。

给定矩阵 A A A 如下:
A = ( a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 ) A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} A= a11a21a31a12a22a32a13a23a33

我们构造一个新的矩阵 A ′ A' A′,其中第 1 行变为原第 1 行加上第 2 行的 k k k 倍:
A ′ = ( a 11 + k ⋅ a 21 a 12 + k ⋅ a 22 a 13 + k ⋅ a 23 a 21 a 22 a 23 a 31 a 32 a 33 ) A' = \begin{pmatrix} a_{11} + k \cdot a_{21} & a_{12} + k \cdot a_{22} & a_{13} + k \cdot a_{23} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} A′= a11+k⋅a21a21a31a12+k⋅a22a22a32a13+k⋅a23a23a33

行列式计算

矩阵 A A A 的行列式计算如下:
det ( A ) = a 11 ⋅ det ( a 22 a 23 a 32 a 33 ) − a 12 ⋅ det ( a 21 a 23 a 31 a 33 ) + a 13 ⋅ det ( a 21 a 22 a 31 a 32 ) \text{det}(A) = a_{11} \cdot \text{det} \begin{pmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{pmatrix} - a_{12} \cdot \text{det} \begin{pmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{pmatrix} + a_{13} \cdot \text{det} \begin{pmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{pmatrix} det(A)=a11⋅det(a22a32a23a33)−a12⋅det(a21a31a23a33)+a13⋅det(a21a31a22a32)

矩阵 A ′ A' A′ 的行列式为:
det ( A ′ ) = ( a 11 + k ⋅ a 21 ) ⋅ det ( a 22 a 23 a 32 a 33 ) − ( a 12 + k ⋅ a 22 ) ⋅ det ( a 21 a 23 a 31 a 33 ) + ( a 13 + k ⋅ a 23 ) ⋅ det ( a 21 a 22 a 31 a 32 ) \text{det}(A') = (a_{11} + k \cdot a_{21}) \cdot \text{det} \begin{pmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{pmatrix} - (a_{12} + k \cdot a_{22}) \cdot \text{det} \begin{pmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{pmatrix} + (a_{13} + k \cdot a_{23}) \cdot \text{det} \begin{pmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{pmatrix} det(A′)=(a11+k⋅a21)⋅det(a22a32a23a33)−(a12+k⋅a22)⋅det(a21a31a23a33)+(a13+k⋅a23)⋅det(a21a31a22a32)

我们可以将这个展开式分成两部分:

  1. 原矩阵 A A A 的行列式部分:
    a 11 ⋅ det ( a 22 a 23 a 32 a 33 ) − a 12 ⋅ det ( a 21 a 23 a 31 a 33 ) + a 13 ⋅ det ( a 21 a 22 a 31 a 32 ) a_{11} \cdot \text{det} \begin{pmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{pmatrix} - a_{12} \cdot \text{det} \begin{pmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{pmatrix} + a_{13} \cdot \text{det} \begin{pmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{pmatrix} a11⋅det(a22a32a23a33)−a12⋅det(a21a31a23a33)+a13⋅det(a21a31a22a32)

    这部分正是原矩阵 A A A 的行列式,即 det ( A ) \text{det}(A) det(A)。

  2. 由第 2 行的倍数带来的新项:
    k ⋅ ( a 21 ⋅ det ( a 22 a 23 a 32 a 33 ) − a 22 ⋅ det ( a 21 a 23 a 31 a 33 ) + a 23 ⋅ det ( a 21 a 22 a 31 a 32 ) ) k \cdot \left( a_{21} \cdot \text{det} \begin{pmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{pmatrix} - a_{22} \cdot \text{det} \begin{pmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{pmatrix} + a_{23} \cdot \text{det} \begin{pmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{pmatrix} \right) k⋅(a21⋅det(a22a32a23a33)−a22⋅det(a21a31a23a33)+a23⋅det(a21a31a22a32))

    这部分对应于矩阵中第 1 行和第 2 行相同的情况。根据行列式的性质,如果矩阵有两行相同,那么行列式为 0。因此,这一部分为 0。

结论

因此,矩阵 A ′ A' A′ 的行列式为:
det ( A ′ ) = det ( A ) + 0 = det ( A ) \text{det}(A') = \text{det}(A) + 0 = \text{det}(A) det(A′)=det(A)+0=det(A)

这证明了:给矩阵的一行加上另一行的倍数不会改变行列式的值

相关推荐
scott19851211 小时前
NVIDIA GPU内部结构:高性能矩阵乘法内核剖析
线性代数·矩阵·gpu·nvidia·cuda
AI科技星15 小时前
能量绝对性与几何本源:统一场论能量方程的第一性原理推导、验证与范式革命
服务器·人工智能·科技·线性代数·算法·机器学习·生活
sunfove16 小时前
上帝的乐谱:从线性代数视角重构傅里叶变换 (FT) 的数学表达式
线性代数·机器学习·重构
AI科技星2 天前
引力与电磁的动力学耦合:变化磁场产生引力场与电场方程的第一性原理推导、验证与统一性意义
服务器·人工智能·科技·线性代数·算法·机器学习·生活
todoitbo2 天前
从零搭建鲲鹏 HPC 环境:从朴素矩阵乘法到高性能实现
线性代数·矩阵·鲲鹏·昇腾
你要飞2 天前
Part 2 矩阵
笔记·线性代数·考研·矩阵
一条大祥脚2 天前
26.1.2 两个数的数位dp 分段快速幂 dp预处理矩阵系数
线性代数·矩阵
byzh_rc2 天前
[认知计算] 专栏总结
线性代数·算法·matlab·信号处理
AI科技星3 天前
电磁耦合常数Z‘的第一性原理推导与严格验证:张祥前统一场论的几何基石
服务器·人工智能·线性代数·算法·矩阵
AI科技星3 天前
电场起源的几何革命:变化的引力场产生电场方程的第一性原理推导、验证与统一性意义
开发语言·人工智能·线性代数·算法·机器学习·数学建模