图像数据处理17

四、形态学图像处理

4.3 开运算与闭运算

4.3.1开运算与闭运算的定义:

开运算:先腐蚀,再膨胀

闭运算:先膨胀,再腐蚀

记忆方法: 膨胀(胀开)所以开运算最后对应的结果是膨胀,闭运算则与其相反,最后对应的结果是腐蚀。

4.3.2开运算与闭运算的作用:

开运算

以二值图像为例,若黑色背景上有一些白色小斑点噪声,开运算先通过腐蚀操作削弱前景图像(所有前景图像即所有白色的部分)来去除噪音(白色小斑点),因为噪音面积相对较小,执行完腐蚀操作后会被黑色完全覆盖。随后再通过开运算的膨胀操作增强前景图像的边界,恢复因腐蚀操作而受影响的非噪音部分的形状面积。其主要优点是不明显改变图像面积的情况下,消除细小的噪音。

闭运算

还是以二值图像为例,闭运算先通过膨胀操作来增强前景图像,通过对前景图像(白色部分)边界的扩充,来消除掺杂在其中的小黑点等噪音,随后在通过腐蚀操作其的腐蚀操作来削弱前景图像的边界,恢复其因膨胀操作而扩充的形状面积。

4.3.3实际应用

python 复制代码
import cv2
import numpy as np

# 读取图像
image = cv2.imread('taiyang2.jpg')

# 定义结构元素
kernel = np.ones((10, 10), np.uint8)

# 开运算:先腐蚀后膨胀
opening = cv2.morphologyEx(image, cv2.MORPH_OPEN, kernel)

# 闭运算:先膨胀后腐蚀
closing = cv2.morphologyEx(image, cv2.MORPH_CLOSE, kernel)

# 将图像缩小一半
resized_image = cv2.resize(image, (0, 0), fx=0.5, fy=0.5)
resized_opening = cv2.resize(opening, (0, 0), fx=0.5, fy=0.5)
resized_closing = cv2.resize(closing, (0, 0), fx=0.5, fy=0.5)

# 水平拼接图像
combined_image = np.hstack((resized_image, resized_opening, resized_closing))

# 在一个窗口中显示拼接后的图像
cv2.imshow('Combined Image', combined_image)

# 等待任意键盘按键
cv2.waitKey(0)
cv2.destroyAllWindows()

第一幅图像是原图,第二幅图像是开运算处理后的图像,第三幅图像是闭运算处理后的图像

在实际应用中开运算与闭运算往往是结合在一起用的,这样往往能达到更好的处理效果。

先开运算后闭运算

python 复制代码
import cv2
import numpy as np

# 读取图像
image = cv2.imread('taiyang2.jpg')

# 定义结构元素
kernel = np.ones((10, 10), np.uint8)

# 开运算:先腐蚀后膨胀
opening = cv2.morphologyEx(image, cv2.MORPH_OPEN, kernel)

# 对开运算后的图像进行闭运算
final_operation = cv2.morphologyEx(opening, cv2.MORPH_CLOSE, kernel)

# 将图像缩小一半
resized_image = cv2.resize(image, (0, 0), fx=0.5, fy=0.5)
resized_final = cv2.resize(final_operation, (0, 0), fx=0.5, fy=0.5)

# 水平拼接图像
combined_image = np.hstack((resized_image, resized_final))

# 在一个窗口中显示拼接后的图像
cv2.imshow('Combined Image', combined_image)

# 等待任意键盘按键
cv2.waitKey(0)
cv2.destroyAllWindows()

先闭运算后开运算

python 复制代码
import cv2
import numpy as np

# 读取图像
image = cv2.imread('taiyang2.jpg')

# 定义结构元素
kernel = np.ones((10, 10), np.uint8)

# 闭运算:先膨胀后腐蚀
closing = cv2.morphologyEx(image, cv2.MORPH_CLOSE, kernel)

# 对闭运算后的图像进行开运算
final_operation = cv2.morphologyEx(closing, cv2.MORPH_OPEN, kernel)

# 将图像缩小一半
resized_image = cv2.resize(image, (0, 0), fx=0.5, fy=0.5)
resized_final = cv2.resize(final_operation, (0, 0), fx=0.5, fy=0.5)

# 水平拼接图像
combined_image = np.hstack((resized_image, resized_final))

# 在一个窗口中显示拼接后的图像
cv2.imshow('Combined Image', combined_image)

# 等待任意键盘按键
cv2.waitKey(0)
cv2.destroyAllWindows()

注:本人为在校学生,博客是边学边写的,主要是为了巩固知识,如有错误请积极指正。

本文的内容主要基于我对张运楚教授编著的《数字图像处理》一书的学习和理解。这本书深入浅出地介绍了数字图像处理的基本理论以及经典算法等,并且提供了丰富的示例代码和实际用例,极大地帮助了我学习图像处理知识。在此,我推荐大家阅读这本书,更加深入的学习有关图像处理的知识。

相关推荐
石小石Orz2 分钟前
Three.js + AI:AI 算法生成 3D 萤火虫飞舞效果~
javascript·人工智能·算法
孤独且没人爱的纸鹤11 分钟前
【深度学习】:从人工神经网络的基础原理到循环神经网络的先进技术,跨越智能算法的关键发展阶段及其未来趋势,探索技术进步与应用挑战
人工智能·python·深度学习·机器学习·ai
阿_旭14 分钟前
TensorFlow构建CNN卷积神经网络模型的基本步骤:数据处理、模型构建、模型训练
人工智能·深度学习·cnn·tensorflow
羊小猪~~15 分钟前
tensorflow案例7--数据增强与测试集, 训练集, 验证集的构建
人工智能·python·深度学习·机器学习·cnn·tensorflow·neo4j
极客代码21 分钟前
【Python TensorFlow】进阶指南(续篇三)
开发语言·人工智能·python·深度学习·tensorflow
zhangfeng113321 分钟前
pytorch 的交叉熵函数,多分类,二分类
人工智能·pytorch·分类
Seeklike22 分钟前
11.22 深度学习-pytorch自动微分
人工智能·pytorch·深度学习
庞传奇23 分钟前
TensorFlow 的基本概念和使用场景
人工智能·python·tensorflow
华清远见IT开放实验室30 分钟前
【每天学点AI】实战图像增强技术在人工智能图像处理中的应用
图像处理·人工智能·python·opencv·计算机视觉
OpenVINO 中文社区39 分钟前
实战精选|如何使用 OpenVINO™ 在 ElectronJS 中创建桌面应用程序
人工智能·openvino