图像数据处理17

四、形态学图像处理

4.3 开运算与闭运算

4.3.1开运算与闭运算的定义:

开运算:先腐蚀,再膨胀

闭运算:先膨胀,再腐蚀

记忆方法: 膨胀(胀开)所以开运算最后对应的结果是膨胀,闭运算则与其相反,最后对应的结果是腐蚀。

4.3.2开运算与闭运算的作用:

开运算

以二值图像为例,若黑色背景上有一些白色小斑点噪声,开运算先通过腐蚀操作削弱前景图像(所有前景图像即所有白色的部分)来去除噪音(白色小斑点),因为噪音面积相对较小,执行完腐蚀操作后会被黑色完全覆盖。随后再通过开运算的膨胀操作增强前景图像的边界,恢复因腐蚀操作而受影响的非噪音部分的形状面积。其主要优点是不明显改变图像面积的情况下,消除细小的噪音。

闭运算

还是以二值图像为例,闭运算先通过膨胀操作来增强前景图像,通过对前景图像(白色部分)边界的扩充,来消除掺杂在其中的小黑点等噪音,随后在通过腐蚀操作其的腐蚀操作来削弱前景图像的边界,恢复其因膨胀操作而扩充的形状面积。

4.3.3实际应用

python 复制代码
import cv2
import numpy as np

# 读取图像
image = cv2.imread('taiyang2.jpg')

# 定义结构元素
kernel = np.ones((10, 10), np.uint8)

# 开运算:先腐蚀后膨胀
opening = cv2.morphologyEx(image, cv2.MORPH_OPEN, kernel)

# 闭运算:先膨胀后腐蚀
closing = cv2.morphologyEx(image, cv2.MORPH_CLOSE, kernel)

# 将图像缩小一半
resized_image = cv2.resize(image, (0, 0), fx=0.5, fy=0.5)
resized_opening = cv2.resize(opening, (0, 0), fx=0.5, fy=0.5)
resized_closing = cv2.resize(closing, (0, 0), fx=0.5, fy=0.5)

# 水平拼接图像
combined_image = np.hstack((resized_image, resized_opening, resized_closing))

# 在一个窗口中显示拼接后的图像
cv2.imshow('Combined Image', combined_image)

# 等待任意键盘按键
cv2.waitKey(0)
cv2.destroyAllWindows()

第一幅图像是原图,第二幅图像是开运算处理后的图像,第三幅图像是闭运算处理后的图像

在实际应用中开运算与闭运算往往是结合在一起用的,这样往往能达到更好的处理效果。

先开运算后闭运算

python 复制代码
import cv2
import numpy as np

# 读取图像
image = cv2.imread('taiyang2.jpg')

# 定义结构元素
kernel = np.ones((10, 10), np.uint8)

# 开运算:先腐蚀后膨胀
opening = cv2.morphologyEx(image, cv2.MORPH_OPEN, kernel)

# 对开运算后的图像进行闭运算
final_operation = cv2.morphologyEx(opening, cv2.MORPH_CLOSE, kernel)

# 将图像缩小一半
resized_image = cv2.resize(image, (0, 0), fx=0.5, fy=0.5)
resized_final = cv2.resize(final_operation, (0, 0), fx=0.5, fy=0.5)

# 水平拼接图像
combined_image = np.hstack((resized_image, resized_final))

# 在一个窗口中显示拼接后的图像
cv2.imshow('Combined Image', combined_image)

# 等待任意键盘按键
cv2.waitKey(0)
cv2.destroyAllWindows()

先闭运算后开运算

python 复制代码
import cv2
import numpy as np

# 读取图像
image = cv2.imread('taiyang2.jpg')

# 定义结构元素
kernel = np.ones((10, 10), np.uint8)

# 闭运算:先膨胀后腐蚀
closing = cv2.morphologyEx(image, cv2.MORPH_CLOSE, kernel)

# 对闭运算后的图像进行开运算
final_operation = cv2.morphologyEx(closing, cv2.MORPH_OPEN, kernel)

# 将图像缩小一半
resized_image = cv2.resize(image, (0, 0), fx=0.5, fy=0.5)
resized_final = cv2.resize(final_operation, (0, 0), fx=0.5, fy=0.5)

# 水平拼接图像
combined_image = np.hstack((resized_image, resized_final))

# 在一个窗口中显示拼接后的图像
cv2.imshow('Combined Image', combined_image)

# 等待任意键盘按键
cv2.waitKey(0)
cv2.destroyAllWindows()

注:本人为在校学生,博客是边学边写的,主要是为了巩固知识,如有错误请积极指正。

本文的内容主要基于我对张运楚教授编著的《数字图像处理》一书的学习和理解。这本书深入浅出地介绍了数字图像处理的基本理论以及经典算法等,并且提供了丰富的示例代码和实际用例,极大地帮助了我学习图像处理知识。在此,我推荐大家阅读这本书,更加深入的学习有关图像处理的知识。

相关推荐
charley.layabox1 小时前
8月1日ChinaJoy酒会 | 游戏出海高端私享局 | 平台 × 发行 × 投资 × 研发精英畅饮畅聊
人工智能·游戏
DFRobot智位机器人2 小时前
AIOT开发选型:行空板 K10 与 M10 适用场景与选型深度解析
人工智能
想成为风筝4 小时前
从零开始学习深度学习—水果分类之PyQt5App
人工智能·深度学习·计算机视觉·pyqt
F_D_Z4 小时前
MMaDA:多模态大型扩散语言模型
人工智能·语言模型·自然语言处理
大知闲闲哟5 小时前
深度学习G2周:人脸图像生成(DCGAN)
人工智能·深度学习
飞哥数智坊5 小时前
Coze实战第15讲:钱都去哪儿了?Coze+飞书搭建自动记账系统
人工智能·coze
wenzhangli75 小时前
低代码引擎核心技术:OneCode常用动作事件速查手册及注解驱动开发详解
人工智能·低代码·云原生
千宇宙航6 小时前
闲庭信步使用图像验证平台加速FPGA的开发:第十课——图像gamma矫正的FPGA实现
图像处理·计算机视觉·缓存·fpga开发
潘达斯奈基~6 小时前
大模型的Temperature、Top-P、Top-K、Greedy Search、Beem Search
人工智能·aigc
倔强青铜三6 小时前
苦练Python第18天:Python异常处理锦囊
人工智能·python·面试