docker+ollama运行微软graphRAG实战流程2-安装运行graphRAG

更新ollama

curl -fsSL https://ollama.com/install.sh | sh

不是最新的ollama的话会导致接口出问题。

安装graphrag

conda create -n graphrag_3 python=3.10

conda activate graphrag_3

pip install graphrag

初始化根目录

python -m graphrag.index --init --root .

最后的.代表是当前目录。

更改配置文件

本人使用的是deepseek大模型和本地ollama的嵌入模型,当然大模型也可以使用本地,但是效果不是很好。而ds的api送得多,效果还可以,就先用着了。

获取ds的API key:DeepSeek

获得的API key写入到根目录(刚刚初始化的)下自动创建的文件夹.env里面去。

GRAPHRAG_API_KEY=sk-aaaaaaaaaaaaaaaaaaa

然后更改配置文件settings.yaml

部分更改内容如下:

llm:
  api_key: ${GRAPHRAG_API_KEY}
  type: openai_chat # or azure_openai_chat
  model: deepseek-chat
  model_supports_json: true # recommended if this is available for your model.
  api_base: https://api.deepseek.com/v1
  max_tokens: 4096
  concurrent_requests: 100 # the number of parallel inflight requests that may be made
  tokens_per_minute: 500000 # set a leaky bucket throttle
  requests_per_minute: 100 # set a leaky bucket throttle
  top_p: 0.99
  # request_timeout: 180.0
  # api_version: 2024-02-15-preview
  # organization: <organization_id>
  # deployment_name: <azure_model_deployment_name>
  max_retries: 3
  max_retry_wait: 10
  sleep_on_rate_limit_recommendation: true # whether to sleep when azure suggests

parallelization:
  stagger: 0.3
  # num_threads: 50 # the number of threads to use for parallel processing

async_mode: threaded # or asyncio

embeddings:
  ## parallelization: override the global parallelization settings for embeddings
  async_mode: threaded # or asyncio
  llm:
    api_key: ${GRAPHRAG_API_KEY}
    type: openai_embedding # or azure_openai_embedding
    model: zailiang/bge-large-zh-v1.5
    api_base: http://localhost:11434/api
    # api_base: https://<instance>.openai.azure.com
    # api_version: 2024-02-15-preview
    # organization: <organization_id>
    # deployment_name: <azure_model_deployment_name>
    # tokens_per_minute: 150_000 # set a leaky bucket throttle
    # requests_per_minute: 10_000 # set a leaky bucket throttle
    # max_retries: 10
    # max_retry_wait: 10.0
    # sleep_on_rate_limit_recommendation: true # whether to sleep when azure suggests wait-times
    # concurrent_requests: 25 # the number of parallel inflight requests that may be made
    # batch_size: 16 # the number of documents to send in a single request
    # batch_max_tokens: 8191 # the maximum number of tokens to send in a single request
    # target: required # or optional

chunks:
  size: 300
  overlap: 100
  group_by_columns: [id] # by default, we don't allow chunks to cross documents

构建索引

python -m graphrag.index --root .

如果使用的是本地ollama跑的嵌入模型,会出问题。(2024年8月20日)

修改源码

使用本地ollama需要修改源码

ollama启动向量模型服务本地部署GraphRAG,从报错到更改,带你定位源码,更改源码_哔哩哔哩_bilibili

cd /root/miniconda3/envs/graphrag_3/lib/python3.10/site-packages/graphrag/llm/openai

两个被改的代码:

注意model='zailiang/bge-large-zh-v1.5:latest'要改成自己使用的嵌入模型。

/root/miniconda3/envs/graphrag_3/lib/python3.10/site-packages/graphrag/llm/openai/openai_embeddings_llm.py

# Copyright (c) 2024 Microsoft Corporation.
# Licensed under the MIT License

"""The EmbeddingsLLM class."""

from typing_extensions import Unpack

import ollama

from graphrag.llm.base import BaseLLM
from graphrag.llm.types import (
    EmbeddingInput,
    EmbeddingOutput,
    LLMInput,
)

from .openai_configuration import OpenAIConfiguration
from .types import OpenAIClientTypes


class OpenAIEmbeddingsLLM(BaseLLM[EmbeddingInput, EmbeddingOutput]):
    """A text-embedding generator LLM."""

    _client: OpenAIClientTypes
    _configuration: OpenAIConfiguration

    def __init__(self, client: OpenAIClientTypes, configuration: OpenAIConfiguration):
        self.client = client
        self.configuration = configuration

    async def _execute_llm(
        self, input: EmbeddingInput, **kwargs: Unpack[LLMInput]
    ) -> EmbeddingOutput | None:
        args = {
            "model": self.configuration.model,
            **(kwargs.get("model_parameters") or {}),
        }
        embedding_list = []
        for inp in input:
            embedding = ollama.embeddings(
                             model='zailiang/bge-large-zh-v1.5:latest',
                             prompt=inp)
            embedding_list.append(embedding["embedding"])
        return embedding_list

       # embedding = await self.client.embeddings.create(
        #    input=input,
         #   **args,
       # )
       # return [d.embedding for d in embedding.data]

/root/miniconda3/envs/graphrag_3/lib/python3.10/site-packages/graphrag/query/llm/oai/embedding.py

# Copyright (c) 2024 Microsoft Corporation.
# Licensed under the MIT License

"""OpenAI Embedding model implementation."""

import asyncio
from collections.abc import Callable
from typing import Any

import numpy as np
import tiktoken
from tenacity import (
    AsyncRetrying,
    RetryError,
    Retrying,
    retry_if_exception_type,
    stop_after_attempt,
    wait_exponential_jitter,
)

from graphrag.query.llm.base import BaseTextEmbedding
from graphrag.query.llm.oai.base import OpenAILLMImpl
from graphrag.query.llm.oai.typing import (
    OPENAI_RETRY_ERROR_TYPES,
    OpenaiApiType,
)
from graphrag.query.llm.text_utils import chunk_text
from graphrag.query.progress import StatusReporter
from langchain_community.embeddings import OllamaEmbeddings

class OpenAIEmbedding(BaseTextEmbedding, OpenAILLMImpl):
    """Wrapper for OpenAI Embedding models."""

    def __init__(
        self,
        api_key: str | None = None,
        azure_ad_token_provider: Callable | None = None,
        model: str = "text-embedding-3-small",
        deployment_name: str | None = None,
        api_base: str | None = None,
        api_version: str | None = None,
        api_type: OpenaiApiType = OpenaiApiType.OpenAI,
        organization: str | None = None,
        encoding_name: str = "cl100k_base",
        max_tokens: int = 8191,
        max_retries: int = 10,
        request_timeout: float = 180.0,
        retry_error_types: tuple[type[BaseException]] = OPENAI_RETRY_ERROR_TYPES,  # type: ignore
        reporter: StatusReporter | None = None,
    ):
        OpenAILLMImpl.__init__(
            self=self,
            api_key=api_key,
            azure_ad_token_provider=azure_ad_token_provider,
            deployment_name=deployment_name,
            api_base=api_base,
            api_version=api_version,
            api_type=api_type,  # type: ignore
            organization=organization,
            max_retries=max_retries,
            request_timeout=request_timeout,
            reporter=reporter,
        )

        self.model = model
        self.encoding_name = encoding_name
        self.max_tokens = max_tokens
        self.token_encoder = tiktoken.get_encoding(self.encoding_name)
        self.retry_error_types = retry_error_types

    def embed(self, text: str, **kwargs: Any) -> list[float]:
        """
        Embed text using OpenAI Embedding's sync function.

        For text longer than max_tokens, chunk texts into max_tokens, embed each chunk, then combine using weighted average.
        Please refer to: https://github.com/openai/openai-cookbook/blob/main/examples/Embedding_long_inputs.ipynb
        """
        token_chunks = chunk_text(
            text=text, token_encoder=self.token_encoder, max_tokens=self.max_tokens
        )
        chunk_embeddings = []
        chunk_lens = []
        for chunk in token_chunks:
            try:
                embedding, chunk_len = self._embed_with_retry(chunk, **kwargs)
                chunk_embeddings.append(embedding)
                chunk_lens.append(chunk_len)
            # TODO: catch a more specific exception
            except Exception as e:  # noqa BLE001
                self._reporter.error(
                    message="Error embedding chunk",
                    details={self.__class__.__name__: str(e)},
                )

                continue
        chunk_embeddings = np.average(chunk_embeddings, axis=0, weights=chunk_lens)
        chunk_embeddings = chunk_embeddings / np.linalg.norm(chunk_embeddings)
        return chunk_embeddings.tolist()

    async def aembed(self, text: str, **kwargs: Any) -> list[float]:
        """
        Embed text using OpenAI Embedding's async function.

        For text longer than max_tokens, chunk texts into max_tokens, embed each chunk, then combine using weighted average.
        """
        token_chunks = chunk_text(
            text=text, token_encoder=self.token_encoder, max_tokens=self.max_tokens
        )
        chunk_embeddings = []
        chunk_lens = []
        embedding_results = await asyncio.gather(*[
            self._aembed_with_retry(chunk, **kwargs) for chunk in token_chunks
        ])
        embedding_results = [result for result in embedding_results if result[0]]
        chunk_embeddings = [result[0] for result in embedding_results]
        chunk_lens = [result[1] for result in embedding_results]
        chunk_embeddings = np.average(chunk_embeddings, axis=0, weights=chunk_lens)  # type: ignore
        chunk_embeddings = chunk_embeddings / np.linalg.norm(chunk_embeddings)
        return chunk_embeddings.tolist()

    def _embed_with_retry(
        self, text: str | tuple, **kwargs: Any
    ) -> tuple[list[float], int]:
        try:
            retryer = Retrying(
                stop=stop_after_attempt(self.max_retries),
                wait=wait_exponential_jitter(max=10),
                reraise=True,
                retry=retry_if_exception_type(self.retry_error_types),
            )
            for attempt in retryer:
                with attempt:
                    embedding = (
              OllamaEmbeddings(
                            model=self.model,
            ).embed_query(text) or [] )
                  #  embedding = (
                   #     self.sync_client.embeddings.create(  # type: ignore
                    #        input=text,
                     #       model=self.model,
                      #      **kwargs,  # type: ignore
                       # )
                       # .data[0]
                       # .embedding
                       # or []
                   # )
                    return (embedding, len(text))
        except RetryError as e:
            self._reporter.error(
                message="Error at embed_with_retry()",
                details={self.__class__.__name__: str(e)},
            )
            return ([], 0)
        else:
            # TODO: why not just throw in this case?
            return ([], 0)

    async def _aembed_with_retry(
        self, text: str | tuple, **kwargs: Any
    ) -> tuple[list[float], int]:
        try:
            retryer = AsyncRetrying(
                stop=stop_after_attempt(self.max_retries),
                wait=wait_exponential_jitter(max=10),
                reraise=True,
                retry=retry_if_exception_type(self.retry_error_types),
            )
            async for attempt in retryer:
                with attempt:
                    embedding = (
                                 await OllamaEmbeddings(
                                       model=self.model,
                                 ).embed_query(text) or [] )
                    
                 #   embedding = (
                  #      await self.async_client.embeddings.create(  # type: ignore
                   #         input=text,
                    #        model=self.model,
                     #       **kwargs,  # type: ignore
                      #  )
                   # ).data[0].embedding or []
                    return (embedding, len(text))
        except RetryError as e:
            self._reporter.error(
                message="Error at embed_with_retry()",
                details={self.__class__.__name__: str(e)},
            )
            return ([], 0)
        else:
            # TODO: why not just throw in this case?
            return ([], 0)

修改后的源码需要装包

pip install langchain
pip install ollama

再次构建索引

python -m graphrag.index --root .

这次就成功了。

使用graphrag

python -m graphrag.query --root . --method local ""

python -m graphrag.query --root . --method global ""

尝试优化prompt

python -m graphrag.prompt_tune --config DONFIG --root . --domain "Chinese Financial Services" --language 
Chinese --chunk-size 300 --output prompt-bank1
相关推荐
ZHOU西口1 小时前
微服务实战系列之玩转Docker(十八)
分布式·docker·云原生·架构·数据安全·etcd·rbac
小奥超人4 小时前
PPT文件设置了修改权限,如何取消权?
windows·经验分享·microsoft·ppt·办公技巧
川石课堂软件测试6 小时前
性能测试|docker容器下搭建JMeter+Grafana+Influxdb监控可视化平台
运维·javascript·深度学习·jmeter·docker·容器·grafana
flashman9117 小时前
python在word中插入图片
python·microsoft·自动化·word
追风林13 小时前
mac 本地docker-mysql主从复制部署
mysql·macos·docker
城南vision15 小时前
Docker学习—Docker核心概念总结
java·学习·docker
wclass-zhengge16 小时前
Docker篇(Docker Compose)
运维·docker·容器
徒步僧16 小时前
ThingsBoard规则链节点:RPC Call Reply节点详解
qt·microsoft·rpc
梦魇梦狸º19 小时前
腾讯轻量云服务器docker拉取不到镜像的问题:拉取超时
docker·容器·github
鬼才血脉19 小时前
docker+mysql配置
mysql·adb·docker