Python酷库之旅-第三方库Pandas(096)

目录

一、用法精讲

411、pandas.DataFrame.values属性

411-1、语法

411-2、参数

411-3、功能

411-4、返回值

411-5、说明

411-6、用法

411-6-1、数据准备

411-6-2、代码示例

411-6-3、结果输出

412、pandas.DataFrame.axes属性

412-1、语法

412-2、参数

412-3、功能

412-4、返回值

412-5、说明

412-6、用法

412-6-1、数据准备

412-6-2、代码示例

412-6-3、结果输出

413、pandas.DataFrame.ndim属性

413-1、语法

413-2、参数

413-3、功能

413-4、返回值

413-5、说明

413-6、用法

413-6-1、数据准备

413-6-2、代码示例

413-6-3、结果输出

414、pandas.DataFrame.size属性

414-1、语法

414-2、参数

414-3、功能

414-4、返回值

414-5、说明

414-6、用法

414-6-1、数据准备

414-6-2、代码示例

414-6-3、结果输出

415、pandas.DataFrame.shape属性

415-1、语法

415-2、参数

415-3、功能

415-4、返回值

415-5、说明

415-6、用法

415-6-1、数据准备

415-6-2、代码示例

415-6-3、结果输出

二、推荐阅读

1、Python筑基之旅

2、Python函数之旅

3、Python算法之旅

4、Python魔法之旅

5、博客个人主页

一、用法精讲

411、pandas.DataFrame.values属性
411-1、语法
python 复制代码
# 411、pandas.DataFrame.values属性
pandas.DataFrame.values
Return a Numpy representation of the DataFrame.

Warning

We recommend using DataFrame.to_numpy() instead.

Only the values in the DataFrame will be returned, the axes labels will be removed.

Returns:
numpy.ndarray
The values of the DataFrame.
411-2、参数

411-3、功能

获取DataFrame中的所有数据,忽略行索引和列标签,方便进行数值计算和操作,因为返回的是NumPy数组。

411-4、返回值

返回一个NumPy ndarray,包含DataFrame中的所有数据,该属性提供了对DataFrame内部存储数据的直接访问。

411-5、说明

411-5-1、如果DataFrame中只有一种数据类型,返回的数组的数据类型将对应该类型,如整数或浮点数。

411-5-2、推荐使用df.to_numpy()来替代values属性,以获得更好的功能和灵活性。

411-6、用法
411-6-1、数据准备
python 复制代码
411-6-2、代码示例
python 复制代码
# 411、pandas.DataFrame.values属性
import pandas as pd
# 创建一个DataFrame
data = {
    'A': [1, 2, 3],
    'B': [4.5, 5.5, 6.5],
    'C': ['foo', 'bar', 'baz']
}
df = pd.DataFrame(data)
# 使用values属性
array_values = df.values
print("DataFrame的值:")
print(array_values)
411-6-3、结果输出
python 复制代码
# 411、pandas.DataFrame.values属性
# DataFrame的值:
# [[1 4.5 'foo']
#  [2 5.5 'bar']
#  [3 6.5 'baz']]
412、pandas.DataFrame.axes属性
412-1、语法
python 复制代码
# 412、pandas.DataFrame.axes属性
pandas.DataFrame.axes
Return a list representing the axes of the DataFrame.

It has the row axis labels and column axis labels as the only members. They are returned in that order.
412-2、参数

412-3、功能

用于获取DataFrame的轴标签,返回一个包含行索引和列索引的列表。

412-4、返回值

返回一个列表,其中包含两个元素:[index, columns]

412-5、说明

412-6、用法
412-6-1、数据准备
python 复制代码
412-6-2、代码示例
python 复制代码
# 412、pandas.DataFrame.axes属性
import pandas as pd
# 创建一个DataFrame
data = {
    'A': [1, 2, 3],
    'B': [4.5, 5.5, 6.5],
    'C': ['foo', 'bar', 'baz']
}
df = pd.DataFrame(data)
# 使用axes属性
axes = df.axes
print("DataFrame的轴标签:")
print("行索引:", axes[0])
print("列索引:", axes[1])
412-6-3、结果输出
python 复制代码
# 412、pandas.DataFrame.axes属性
# DataFrame的轴标签:
# 行索引: RangeIndex(start=0, stop=3, step=1)
# 列索引: Index(['A', 'B', 'C'], dtype='object')
413、pandas.DataFrame.ndim属性
413-1、语法
python 复制代码
# 413、pandas.DataFrame.ndim属性
pandas.DataFrame.ndim
Return an int representing the number of axes / array dimensions.

Return 1 if Series. Otherwise return 2 if DataFrame.
413-2、参数

413-3、功能

用于获取DataFrame的维度。

413-4、返回值

返回一个整数,表示数据的维度级别。

413-5、说明

413-6、用法
413-6-1、数据准备
python 复制代码
413-6-2、代码示例
python 复制代码
# 413、pandas.DataFrame.ndim属性
import pandas as pd
# 创建一个DataFrame
data = {
    'A': [1, 2, 3],
    'B': [4.5, 5.5, 6.5],
    'C': ['foo', 'bar', 'baz']
}
df = pd.DataFrame(data)
# 获取DataFrame的维度
dimensions = df.ndim
print("DataFrame的维度:", dimensions)
413-6-3、结果输出
python 复制代码
# 413、pandas.DataFrame.ndim属性
# DataFrame的维度: 2
414、pandas.DataFrame.size属性
414-1、语法
python 复制代码
# 414、pandas.DataFrame.size属性
pandas.DataFrame.size
Return an int representing the number of elements in this object.

Return the number of rows if Series. Otherwise return the number of rows times number of columns if DataFrame.
414-2、参数

414-3、功能

用于获取DataFrame中所有元素的总数。

414-4、返回值

返回一个整数,表示DataFrame中的行数与列数的乘积。

414-5、说明

414-6、用法
414-6-1、数据准备
python 复制代码
414-6-2、代码示例
python 复制代码
# 414、pandas.DataFrame.size属性
import pandas as pd
# 创建一个DataFrame
data = {
    'A': [1, 2, 3],
    'B': [4.5, 5.5, 6.5],
    'C': ['foo', 'bar', 'baz']
}
df = pd.DataFrame(data)
# 获取DataFrame的大小
total_elements = df.size
print("DataFrame的总元素数:", total_elements)
414-6-3、结果输出
python 复制代码
# 414、pandas.DataFrame.size属性
# DataFrame的总元素数: 9
415、pandas.DataFrame.shape属性
415-1、语法
python 复制代码
# 415、pandas.DataFrame.shape属性
pandas.DataFrame.shape
Return a tuple representing the dimensionality of the DataFrame.
415-2、参数

415-3、功能

用于获取DataFrame的维度信息。

415-4、返回值

返回一个元组,其中包含行数和列数。

415-5、说明

415-6、用法
415-6-1、数据准备
python 复制代码
415-6-2、代码示例
python 复制代码
# 415、pandas.DataFrame.shape属性
import pandas as pd
# 创建一个DataFrame
data = {
    'A': [1, 2, 3],
    'B': [4.5, 5.5, 6.5],
    'C': ['foo', 'bar', 'baz']
}
df = pd.DataFrame(data)
# 获取DataFrame的维度
dimensions = df.shape
print("DataFrame的维度:", dimensions)
415-6-3、结果输出
python 复制代码
# 415、pandas.DataFrame.shape属性
# DataFrame的维度: (3, 3)

二、推荐阅读

1、Python筑基之旅
2、Python函数之旅
3、Python算法之旅
4、Python魔法之旅
5、博客个人主页
相关推荐
0wioiw04 分钟前
Ubuntu基础(Python虚拟环境和Vue)
linux·python·ubuntu
xiao5kou4chang6kai414 分钟前
Python-GEE遥感云大数据分析与可视化(如何建立基于云计算的森林监测预警系统)
python·数据分析·云计算·森林监测·森林管理
铭keny20 分钟前
YOLO11 目标检测从安装到实战
人工智能·目标检测·目标跟踪
presenttttt21 分钟前
用Python和OpenCV从零搭建一个完整的双目视觉系统(四)
开发语言·python·opencv·计算机视觉
每日出拳老爷子27 分钟前
[C#] 使用TextBox换行失败的原因与解决方案:换用RichTextBox的实战经验
开发语言·c#
半桔31 分钟前
【Linux手册】从接口到管理:Linux文件系统的核心操作指南
android·java·linux·开发语言·面试·系统架构
禁默38 分钟前
Linux Vim 编辑器详解:从入门到进阶(含图示+插件推荐)
linux·vim·excel
nightunderblackcat39 分钟前
新手向:实现ATM模拟系统
java·开发语言·spring boot·spring cloud·tomcat·maven·intellij-idea
开开心心就好42 分钟前
电脑息屏工具,一键黑屏超方便
开发语言·javascript·电脑·scala·erlang·perl
笑衬人心。1 小时前
Java 17 新特性笔记
java·开发语言·笔记