Python酷库之旅-第三方库Pandas(096)

目录

一、用法精讲

411、pandas.DataFrame.values属性

411-1、语法

411-2、参数

411-3、功能

411-4、返回值

411-5、说明

411-6、用法

411-6-1、数据准备

411-6-2、代码示例

411-6-3、结果输出

412、pandas.DataFrame.axes属性

412-1、语法

412-2、参数

412-3、功能

412-4、返回值

412-5、说明

412-6、用法

412-6-1、数据准备

412-6-2、代码示例

412-6-3、结果输出

413、pandas.DataFrame.ndim属性

413-1、语法

413-2、参数

413-3、功能

413-4、返回值

413-5、说明

413-6、用法

413-6-1、数据准备

413-6-2、代码示例

413-6-3、结果输出

414、pandas.DataFrame.size属性

414-1、语法

414-2、参数

414-3、功能

414-4、返回值

414-5、说明

414-6、用法

414-6-1、数据准备

414-6-2、代码示例

414-6-3、结果输出

415、pandas.DataFrame.shape属性

415-1、语法

415-2、参数

415-3、功能

415-4、返回值

415-5、说明

415-6、用法

415-6-1、数据准备

415-6-2、代码示例

415-6-3、结果输出

二、推荐阅读

1、Python筑基之旅

2、Python函数之旅

3、Python算法之旅

4、Python魔法之旅

5、博客个人主页

一、用法精讲

411、pandas.DataFrame.values属性
411-1、语法
python 复制代码
# 411、pandas.DataFrame.values属性
pandas.DataFrame.values
Return a Numpy representation of the DataFrame.

Warning

We recommend using DataFrame.to_numpy() instead.

Only the values in the DataFrame will be returned, the axes labels will be removed.

Returns:
numpy.ndarray
The values of the DataFrame.
411-2、参数

411-3、功能

获取DataFrame中的所有数据,忽略行索引和列标签,方便进行数值计算和操作,因为返回的是NumPy数组。

411-4、返回值

返回一个NumPy ndarray,包含DataFrame中的所有数据,该属性提供了对DataFrame内部存储数据的直接访问。

411-5、说明

411-5-1、如果DataFrame中只有一种数据类型,返回的数组的数据类型将对应该类型,如整数或浮点数。

411-5-2、推荐使用df.to_numpy()来替代values属性,以获得更好的功能和灵活性。

411-6、用法
411-6-1、数据准备
python 复制代码
411-6-2、代码示例
python 复制代码
# 411、pandas.DataFrame.values属性
import pandas as pd
# 创建一个DataFrame
data = {
    'A': [1, 2, 3],
    'B': [4.5, 5.5, 6.5],
    'C': ['foo', 'bar', 'baz']
}
df = pd.DataFrame(data)
# 使用values属性
array_values = df.values
print("DataFrame的值:")
print(array_values)
411-6-3、结果输出
python 复制代码
# 411、pandas.DataFrame.values属性
# DataFrame的值:
# [[1 4.5 'foo']
#  [2 5.5 'bar']
#  [3 6.5 'baz']]
412、pandas.DataFrame.axes属性
412-1、语法
python 复制代码
# 412、pandas.DataFrame.axes属性
pandas.DataFrame.axes
Return a list representing the axes of the DataFrame.

It has the row axis labels and column axis labels as the only members. They are returned in that order.
412-2、参数

412-3、功能

用于获取DataFrame的轴标签,返回一个包含行索引和列索引的列表。

412-4、返回值

返回一个列表,其中包含两个元素:[index, columns]

412-5、说明

412-6、用法
412-6-1、数据准备
python 复制代码
412-6-2、代码示例
python 复制代码
# 412、pandas.DataFrame.axes属性
import pandas as pd
# 创建一个DataFrame
data = {
    'A': [1, 2, 3],
    'B': [4.5, 5.5, 6.5],
    'C': ['foo', 'bar', 'baz']
}
df = pd.DataFrame(data)
# 使用axes属性
axes = df.axes
print("DataFrame的轴标签:")
print("行索引:", axes[0])
print("列索引:", axes[1])
412-6-3、结果输出
python 复制代码
# 412、pandas.DataFrame.axes属性
# DataFrame的轴标签:
# 行索引: RangeIndex(start=0, stop=3, step=1)
# 列索引: Index(['A', 'B', 'C'], dtype='object')
413、pandas.DataFrame.ndim属性
413-1、语法
python 复制代码
# 413、pandas.DataFrame.ndim属性
pandas.DataFrame.ndim
Return an int representing the number of axes / array dimensions.

Return 1 if Series. Otherwise return 2 if DataFrame.
413-2、参数

413-3、功能

用于获取DataFrame的维度。

413-4、返回值

返回一个整数,表示数据的维度级别。

413-5、说明

413-6、用法
413-6-1、数据准备
python 复制代码
413-6-2、代码示例
python 复制代码
# 413、pandas.DataFrame.ndim属性
import pandas as pd
# 创建一个DataFrame
data = {
    'A': [1, 2, 3],
    'B': [4.5, 5.5, 6.5],
    'C': ['foo', 'bar', 'baz']
}
df = pd.DataFrame(data)
# 获取DataFrame的维度
dimensions = df.ndim
print("DataFrame的维度:", dimensions)
413-6-3、结果输出
python 复制代码
# 413、pandas.DataFrame.ndim属性
# DataFrame的维度: 2
414、pandas.DataFrame.size属性
414-1、语法
python 复制代码
# 414、pandas.DataFrame.size属性
pandas.DataFrame.size
Return an int representing the number of elements in this object.

Return the number of rows if Series. Otherwise return the number of rows times number of columns if DataFrame.
414-2、参数

414-3、功能

用于获取DataFrame中所有元素的总数。

414-4、返回值

返回一个整数,表示DataFrame中的行数与列数的乘积。

414-5、说明

414-6、用法
414-6-1、数据准备
python 复制代码
414-6-2、代码示例
python 复制代码
# 414、pandas.DataFrame.size属性
import pandas as pd
# 创建一个DataFrame
data = {
    'A': [1, 2, 3],
    'B': [4.5, 5.5, 6.5],
    'C': ['foo', 'bar', 'baz']
}
df = pd.DataFrame(data)
# 获取DataFrame的大小
total_elements = df.size
print("DataFrame的总元素数:", total_elements)
414-6-3、结果输出
python 复制代码
# 414、pandas.DataFrame.size属性
# DataFrame的总元素数: 9
415、pandas.DataFrame.shape属性
415-1、语法
python 复制代码
# 415、pandas.DataFrame.shape属性
pandas.DataFrame.shape
Return a tuple representing the dimensionality of the DataFrame.
415-2、参数

415-3、功能

用于获取DataFrame的维度信息。

415-4、返回值

返回一个元组,其中包含行数和列数。

415-5、说明

415-6、用法
415-6-1、数据准备
python 复制代码
415-6-2、代码示例
python 复制代码
# 415、pandas.DataFrame.shape属性
import pandas as pd
# 创建一个DataFrame
data = {
    'A': [1, 2, 3],
    'B': [4.5, 5.5, 6.5],
    'C': ['foo', 'bar', 'baz']
}
df = pd.DataFrame(data)
# 获取DataFrame的维度
dimensions = df.shape
print("DataFrame的维度:", dimensions)
415-6-3、结果输出
python 复制代码
# 415、pandas.DataFrame.shape属性
# DataFrame的维度: (3, 3)

二、推荐阅读

1、Python筑基之旅
2、Python函数之旅
3、Python算法之旅
4、Python魔法之旅
5、博客个人主页
相关推荐
萧鼎几秒前
深度探索 Py2neo:用 Python 玩转图数据库 Neo4j
数据库·python·neo4j
华子w90892585916 分钟前
基于 Python Django 和 Spark 的电力能耗数据分析系统设计与实现7000字论文实现
python·spark·django
风铃喵游29 分钟前
让大模型调用MCP服务变得超级简单
前端·人工智能
coding随想38 分钟前
JavaScript中的BOM:Window对象全解析
开发语言·javascript·ecmascript
Rockson43 分钟前
使用Ruby接入实时行情API教程
javascript·python
booooooty1 小时前
基于Spring AI Alibaba的多智能体RAG应用
java·人工智能·spring·多智能体·rag·spring ai·ai alibaba
念九_ysl1 小时前
Java 使用 OpenHTMLToPDF + Batik 将含 SVG 遮罩的 HTML 转为 PDF 的完整实践
java·开发语言·pdf
PyAIExplorer1 小时前
基于 OpenCV 的图像 ROI 切割实现
人工智能·opencv·计算机视觉
风口猪炒股指标1 小时前
技术分析、超短线打板模式与情绪周期理论,在市场共识的形成、分歧、瓦解过程中缘起性空的理解
人工智能·博弈论·群体博弈·人生哲学·自我引导觉醒
yaoxin5211231 小时前
124. Java 泛型 - 有界类型参数
java·开发语言