Matlab|计及光伏电站快速无功响应特性的分布式电源优化配置方法

目录

[1 主要内容](#1 主要内容)

目标函数

约束条件

程序亮点

[2 部分代码](#2 部分代码)

[3 程序结果](#3 程序结果)

[4 下载链接](#4 下载链接)


1 主要内容

该程序复现博士文章《互动环境下分布式电源与电动汽车充电站的优化配置方法研究》第二章《计及光伏电站快速无功响应特性的分布式电源优化配置方法》,本章选取了光伏电站、微型燃气轮机两种典型的分布式电源进行优化配置问题的研究,通过构建加权电压支撑能力指标以表征配电系统中光伏电站对敏感负荷节点的电压支撑能力,并将其嵌入到分布式电源优化配置模型中以求解最优的分布式电源安装位置和安装容量。算例分析部分基于IEEE-33节点配电系统的优化结果,充分证明了本章研究的价值和意义。

目标函数

约束条件

程序亮点

本程序除了常规的33节点二阶锥模型的约束形式外,最大的特点是电压支撑能力指标,基于灵敏度分析理论求解该项指标,为原文增色不少!

2 部分代码

复制代码
Jz=inv(J);%求解雅可比矩阵逆矩阵
B4j=Jz(33:64,33:64);%求解得到B4j值,未考虑平衡节点
B4=[B4j,zeros(32,1);zeros(1,33)];%得到包含平衡节点的B4
%%
branch = mpc.branch;
branch(:,3) = branch(:,3)*100/(12.66^2);%求阻抗标幺值
r=real(branch(:,3));
x=imag(branch(:,3));
r=r(1:32);
x=x(1:32);
upstream=zeros(nb,nl);%代表流入节点支路
dnstream=zeros(nb,nl);%代表流出节点支路
for i=1:32
    upstream(i,i)=1;
end
for i=[1:16,18:20,22:23,25:31]
    dnstream(i,i+1)=1;
end
dnstream(1,18)=1;
dnstream(2,22)=1;
dnstream(5,25)=1;
dnstream(33,1)=1;
​
Vmax=[1.05*1.05*ones(32,1);1.05*1.05*ones(1,1)];
Vmin=[0.95*0.95*ones(32,1);1.05*1.05*ones(1,1)];
Pgmax=[zeros(32,1);100.*ones(1,1)];
Qgmax=[zeros(32,1);100.*ones(1,1)];
%计算负荷矩阵
Pload=busd(:,7);
Qload=busd(:,8);
P1=repmat(ploadz,33,1).*repmat(Pload,1,4*T)/100;%有功负荷矩阵
Q1=repmat(ploadz,33,1).*repmat(Qload,1,4*T)/100;%无功负荷矩阵
P2=zeros(33,4*T*N);
Q2=zeros(33,4*T*N);
for i=1:4*T%转化为4*T*N列矩阵
    for j=1:N
    P2(:,5*i+j-5)=P1(:,i);
    Q2(:,5*i+j-5)=Q1(:,i);
    end
end
%定义变量
V = sdpvar(nb,4*T*N);%电压的平方
I = sdpvar(nl,4*T*N);%电流的平方
P = sdpvar(nl,4*T*N);%线路有功
Q = sdpvar(nl,4*T*N);%线路无功
Pg = sdpvar(nb,4*T*N);%发电机有功
Qg = sdpvar(nb,4*T*N);%发电机无功
Npv = intvar(8,1);%光伏节点安装数量
%pv = sdpvar(nb,4*T*N);
qv = sdpvar(nb,4*T*N);
qv_h=sdpvar(8,4*T*N);
%sv = sdpvar(nb,4*T*N);
Ng = intvar(6,1);%燃气轮机安装数量
pg = intvar(nb,4*T*N);
Constraints = [];
%光伏处理
unitpv=10*1e-5;%单位光伏容量
pv_h=repmat(Npv,1,4*T*N).*repmat(dw_pv,8,4*T).*unitpv/10;
pv=[zeros(4,4*T*N);pv_h(1,:);zeros(5,4*T*N);pv_h(2,:);zeros(2,4*T*N);pv_h(3,:);zeros(1,4*T*N);pv_h(4,:);zeros(3,4*T*N);pv_h(5,:);zeros(2,4*T*N);pv_h(6,:);zeros(5,4*T*N);pv_h(7,:);zeros(1,4*T*N);pv_h(8,:);zeros(2,4*T*N)];
sv_h=unitpv.*repmat(Npv,1,4*T*N);
sv=[zeros(4,4*T*N);sv_h(1,:);zeros(5,4*T*N);sv_h(2,:);zeros(2,4*T*N);sv_h(3,:);zeros(1,4*T*N);sv_h(4,:);zeros(3,4*T*N);sv_h(5,:);zeros(2,4*T*N);sv_h(6,:);zeros(5,4*T*N);sv_h(7,:);zeros(1,4*T*N);sv_h(8,:);zeros(2,4*T*N)];
​
% Constraints = [Constraints,pv>=0,pv<=repmat(unitpv.*Npv,1,4*T*N)];
% Constraints = [Constraints,pv>=0,pv<=repmat(unitpv.*Npv,1,4*T*N)];
for i=1:33
    for t=1:T
        Constraints = [Constraints,cone([pv(i,t);qv(i,t)],sv(i,t))];
    end
end
qv=[zeros(4,4*T*N);qv_h(1,:);zeros(5,4*T*N);qv_h(2,:);zeros(2,4*T*N);qv_h(3,:);zeros(1,4*T*N);qv_h(4,:);zeros(3,4*T*N);qv_h(5,:);zeros(2,4*T*N);qv_h(6,:);zeros(5,4*T*N);qv_h(7,:);zeros(1,4*T*N);qv_h(8,:);zeros(2,4*T*N)];
Constraints = [Constraints,Npv>=0,Ng>=0,Npv<=100];
%微燃机处理

3 程序结果

4 下载链接

相关推荐
zhixingheyi_tian16 分钟前
Spark 之 Aggregate
大数据·分布式·spark
求积分不加C2 小时前
-bash: ./kafka-topics.sh: No such file or directory--解决方案
分布式·kafka
nathan05292 小时前
javaer快速上手kafka
分布式·kafka
谭震鸿5 小时前
Zookeeper集群搭建Centos环境下
分布式·zookeeper·centos
Evand J7 小时前
集合卡尔曼滤波(Ensemble Kalman Filter),用于二维滤波(模拟平面上的目标跟踪),MATLAB代码
matlab·平面·目标跟踪
天冬忘忧10 小时前
Kafka 工作流程解析:从 Broker 工作原理、节点的服役、退役、副本的生成到数据存储与读写优化
大数据·分布式·kafka
我是博博啦12 小时前
matlab例题
人工智能·算法·matlab
2402_8713219513 小时前
MATLAB方程组
gpt·学习·线性代数·算法·matlab
IT枫斗者15 小时前
如何解决Java EasyExcel 导出报内存溢出
java·服务器·开发语言·网络·分布式·物联网
求积分不加C15 小时前
Kafka怎么发送JAVA对象并在消费者端解析出JAVA对象--示例
java·分布式·kafka·linq