OpenCV Lesson 3 : Mask operations on matrices

矩阵上的掩码运算

Mask operations on matrices are quite simple. The idea is that we recalculate each pixel's value in an image according to a mask matrix (also known as kernel). This mask holds values that will adjust how much influence neighboring pixels (and the current pixel) have on the new pixel value. From a mathematical point of view we make a weighted average, with our specified values.

矩阵上的掩模运算非常简单。这个想法是我们根据掩模矩阵(也称为内核)重新计算图像中每个像素的值。该掩码保存的值将调整相邻像素(和当前像素)对新像素值的影响程度。从数学的角度来看,我们使用指定的值进行加权平均值。

Let's consider the issue of an image contrast enhancement method.

让我们考虑图像对比度增强方法的问题。

I ( i , j ) = 5 ∗ I ( i , j ) − [ I ( i − 1 , j ) + I ( i + 1 , j ) + I ( i , j − 1 ) + I ( i , j + 1 ) ] I(i,j) = 5 * I(i,j) - [I(i-1, j) + I(i+1, j)+I(i,j-1)+I(i,j+1)] I(i,j)=5∗I(i,j)−[I(i−1,j)+I(i+1,j)+I(i,j−1)+I(i,j+1)]

⟺    I ( i , j ) ∗ M , w h e r e M = i / j − 1 0 + 1 − 1 0 − 1 0 0 − 1 5 − 1 + 1 0 − 1 0 \iff I(i,j)*M, where M = \begin{matrix} {i \ / j} & -1 & 0 & +1 \\ -1 & 0 & -1 & 0 \\ 0 & -1 & 5 & -1 \\ +1 & 0 & -1 & 0 \end{matrix} ⟺I(i,j)∗M,whereM=i /j−10+1−10−100−15−1+10−10

The first notation is by using a formula, while the second is a compacted version of the first by using a mask. You use the mask by putting the center of the mask matrix (in the upper case noted by the zero-zero index) on the pixel you want to calculate and sum up the pixel values multiplied with the overlapped matrix values. It's the same thing, however in case of large matrices the latter notation is a lot easier to look over.

第一个表示法是使用公式,而第二个表示法是使用掩码的第一个表示法的压缩版本。您可以通过将掩码矩阵的中心(以零零索引表示的大写字母)放在要计算的像素上来使用掩码,并将像素值与重叠矩阵值相乘求和。这是同样的事情,但是在大型矩阵的情况下,后一种表示法更容易查看。

Built-in filter2D

First, we load one image

bash 复制代码
cv::Mat dst0, dst1;
cv::Mat src = imread( "Lena.png", IMREAD_GRAYSCALE);

Then, we need a kernel

bash 复制代码
    Mat kernel = (Mat_<char>(3,3) <<  0, -1,  0,
                                   -1,  5, -1,
                                    0, -1,  0);

Finally, do filter2D

bash 复制代码
filter2D( src, dst1, src.depth(), kernel );

Hand written

bash 复制代码
void Sharpen(const Mat& myImage,Mat& Result)
{
    CV_Assert(myImage.depth() == CV_8U);  // accept only uchar images
 
    const int nChannels = myImage.channels();
    Result.create(myImage.size(),myImage.type());
 
    for(int j = 1 ; j < myImage.rows-1; ++j)
    {
        const uchar* previous = myImage.ptr<uchar>(j - 1);
        const uchar* current  = myImage.ptr<uchar>(j    );
        const uchar* next     = myImage.ptr<uchar>(j + 1);
 
        uchar* output = Result.ptr<uchar>(j);
 
        for(int i= nChannels;i < nChannels*(myImage.cols-1); ++i)
        {
            output[i] = saturate_cast<uchar>(5*current[i]
                         -current[i-nChannels] - current[i+nChannels] - previous[i] - next[i]);
        }
    }
 
    Result.row(0).setTo(Scalar(0));
    Result.row(Result.rows-1).setTo(Scalar(0));
    Result.col(0).setTo(Scalar(0));
    Result.col(Result.cols-1).setTo(Scalar(0));
}

Use getTickCount(), and getTickFrequency() get the time passed

bash 复制代码
t = ((double)getTickCount() - t)/getTickFrequency();
相关推荐
一切尽在,你来11 分钟前
1.2 LangChain 1.2.7 版本核心特性与升级点
人工智能·langchain
LYFlied13 分钟前
AI大时代下前端跨端解决方案的现状与演进路径
前端·人工智能
深蓝电商API15 分钟前
图片验证码识别:pytesseract+opencv入门
人工智能·opencv·计算机视觉·pytesseract
.Katherine௰16 分钟前
AI数字人模拟面试机器人
人工智能
光影少年17 分钟前
AI 前端 / 高级前端
前端·人工智能·状态模式
zhangshuang-peta21 分钟前
OpenCode vs Claude Code vs OpenAI Codex:AI编程助手全面对比
人工智能·ai agent·mcp·peta
Bruk.Liu24 分钟前
(LangChain 实战14):基于 ChatMessageHistory 自定义实现对话记忆功能
人工智能·python·langchain·agent
代码改善世界25 分钟前
CANN中的AI算子开发:ops-nn仓库深度解读
人工智能
大江东去浪淘尽千古风流人物39 分钟前
【VLN】VLN(Vision-and-Language Navigation视觉语言导航)算法本质,范式难点及解决方向(1)
人工智能·python·算法
云飞云共享云桌面39 分钟前
高性能图形工作站的资源如何共享给10个SolidWorks研发设计用
linux·运维·服务器·前端·网络·数据库·人工智能