Prompt-Tuning 和 LoRA大模型微调方法区别

Prompt-Tuning 和 LoRA(Low-Rank Adaptation)都是在预训练语言模型基础上进行微调的方法,它们有以下一些区别:

一、调整方式

  1. Prompt-Tuning:

    • 主要是通过优化特定任务的提示(prompt)来实现微调。
    • 通常在输入层引入可学习的连续提示向量,这些提示向量与原始输入进行拼接或其他方式的组合后输入到模型中。
    • 调整的参数主要集中在提示向量部分,对模型主体的参数改动相对较小。
  2. LoRA:

    • 通过在预训练模型的权重矩阵中插入低秩分解矩阵来实现微调。
    • 具体来说,将模型权重的变化表示为低秩矩阵的乘积,只训练这些低秩矩阵的参数,而保持原始模型的大部分参数固定。

二、参数效率

  1. Prompt-Tuning:

    • 通常需要引入相对较少的可学习参数,因为主要是调整提示向量。
    • 对于大规模语言模型,相比全模型微调,可以大大减少需要训练的参数数量,从而降低计算资源需求和训练时间。
  2. LoRA:

    • 同样具有较高的参数效率。由于只训练低秩矩阵,参数数量远小于全模型微调。
    • 可以在保持模型主体参数不变的情况下,实现有效的微调,适用于资源有限的场景。

三、适用性和灵活性

  1. Prompt-Tuning:

    • 对于不同的任务,可以设计不同的提示策略,具有一定的灵活性。
    • 但对于某些复杂任务,可能需要精心设计提示才能获得较好的性能。
  2. LoRA:

    • 相对来说适用性更广,可以应用于各种类型的预训练语言模型和任务。
    • 对模型结构的改动较小,更容易与现有的模型和训练框架集成。

四、训练稳定性

  1. Prompt-Tuning:

    • 由于调整的参数相对较少,可能在训练过程中相对较稳定。
    • 但如果提示设计不合理,可能会导致性能不佳或训练困难。
  2. LoRA:

    • 通常也具有较好的训练稳定性。低秩矩阵的训练相对容易收敛,并且对原始模型的影响较小,减少了过拟合的风险。
相关推荐
全栈胖叔叔-瓜州17 分钟前
关于llamasharp 大模型多轮对话,模型对话无法终止,或者输出角色标识User:,或者System等角色标识问题。
前端·人工智能
坚果派·白晓明37 分钟前
AI驱动的命令行工具集x-cmd鸿蒙化适配后通过DevBox安装使用
人工智能·华为·harmonyos
GISer_Jing1 小时前
前端营销技术实战:数据+AI实战指南
前端·javascript·人工智能
Dekesas96951 小时前
【深度学习】基于Faster R-CNN的黄瓜幼苗智能识别与定位系统,农业AI新突破
人工智能·深度学习·r语言
大佐不会说日语~2 小时前
Spring AI Alibaba 的 ChatClient 工具注册与 Function Calling 实践
人工智能·spring boot·python·spring·封装·spring ai
CeshirenTester2 小时前
Playwright元素定位详解:8种定位策略实战指南
人工智能·功能测试·程序人生·单元测试·自动化
世岩清上2 小时前
AI驱动的智能运维:从自动化到自主化的技术演进与架构革新
运维·人工智能·自动化
K2_BPM2 小时前
告别“单点智能”:AI Agent如何重构企业生产力与流程?
人工智能
TMT星球2 小时前
深业云从人工智能产业投资基金设立,聚焦AI和具身智能相关产业
人工智能
哥布林学者2 小时前
吴恩达深度学习课程四:计算机视觉 第二周:经典网络结构 (三)1×1卷积与Inception网络
深度学习·ai