Prompt-Tuning 和 LoRA大模型微调方法区别

Prompt-Tuning 和 LoRA(Low-Rank Adaptation)都是在预训练语言模型基础上进行微调的方法,它们有以下一些区别:

一、调整方式

  1. Prompt-Tuning:

    • 主要是通过优化特定任务的提示(prompt)来实现微调。
    • 通常在输入层引入可学习的连续提示向量,这些提示向量与原始输入进行拼接或其他方式的组合后输入到模型中。
    • 调整的参数主要集中在提示向量部分,对模型主体的参数改动相对较小。
  2. LoRA:

    • 通过在预训练模型的权重矩阵中插入低秩分解矩阵来实现微调。
    • 具体来说,将模型权重的变化表示为低秩矩阵的乘积,只训练这些低秩矩阵的参数,而保持原始模型的大部分参数固定。

二、参数效率

  1. Prompt-Tuning:

    • 通常需要引入相对较少的可学习参数,因为主要是调整提示向量。
    • 对于大规模语言模型,相比全模型微调,可以大大减少需要训练的参数数量,从而降低计算资源需求和训练时间。
  2. LoRA:

    • 同样具有较高的参数效率。由于只训练低秩矩阵,参数数量远小于全模型微调。
    • 可以在保持模型主体参数不变的情况下,实现有效的微调,适用于资源有限的场景。

三、适用性和灵活性

  1. Prompt-Tuning:

    • 对于不同的任务,可以设计不同的提示策略,具有一定的灵活性。
    • 但对于某些复杂任务,可能需要精心设计提示才能获得较好的性能。
  2. LoRA:

    • 相对来说适用性更广,可以应用于各种类型的预训练语言模型和任务。
    • 对模型结构的改动较小,更容易与现有的模型和训练框架集成。

四、训练稳定性

  1. Prompt-Tuning:

    • 由于调整的参数相对较少,可能在训练过程中相对较稳定。
    • 但如果提示设计不合理,可能会导致性能不佳或训练困难。
  2. LoRA:

    • 通常也具有较好的训练稳定性。低秩矩阵的训练相对容易收敛,并且对原始模型的影响较小,减少了过拟合的风险。
相关推荐
weixin_468466851 分钟前
PyTorch导出ONNX格式分割模型及在C#中调用预测
人工智能·pytorch·深度学习·c#·跨平台·onnx·语义分割
AI英德西牛仔2 分钟前
AIword排版
人工智能
阿林来了8 分钟前
Flutter三方库适配OpenHarmony【flutter_speech】— 语音识别启动与参数配置
人工智能·flutter·语音识别·harmonyos
软件算法开发9 分钟前
基于火烈鸟搜索算法的LSTM网络模型(FSA-LSTM)的一维时间序列预测matlab仿真
人工智能·rnn·matlab·lstm·一维时间序列预测·火烈鸟搜索算法·fsa-lstm
永霖光电_UVLED8 小时前
NUBURU启动Q1阶段,实现40套高功率蓝光激光系统的量产
大数据·人工智能
RFG20128 小时前
20、详解Dubbo框架:消费方如何动态获取服务提供方地址?【微服务架构入门】
java·人工智能·后端·微服务·云原生·架构·dubbo
紫微AI9 小时前
适用于代理Agents的语言
人工智能·agents·新语言
CCPC不拿奖不改名9 小时前
虚拟机基础:在VMware WorkStation上安装Linux为容器化部署打基础
linux·运维·服务器·人工智能·milvus·知识库搭建·容器化部署
这是个栗子9 小时前
AI辅助编程工具(六) - CodeGeeX
人工智能·ai·codegeex
vortesnail9 小时前
超详细的云服务部署 OpenClaw 并接入飞书全流程,别再趟坑了
人工智能·程序员·openai