ollma 本地部署大模型

因为我本地是 windows 的系统,所以这里直接写的是通过 docker 来实现本地大模型的部署。

windows 下 WSl 的安装这里就不做重复,详见 windows 部署 mindspore GPU 开发环境(WSL)

一、Docker 部署 ollma

1. 拉取镜像(笔记本没有对象显卡,所以拉取的镜像是CPU 版本的):
bash 复制代码
docker pull ollama/ollama:0.3.7-rc6
2. 启动镜像

仅 CPU 版本启动

bash 复制代码
docker run -d -v /home/jie/ollama:/root/.ollama -p 11434:11434 --name ollama ollama/ollama:0.3.7-rc6

此时访问本地的 11434 端口,可以看到 Ollama is running 的字样

1.1 通过对话交互的方式启动 llama3

ollma 贴心的提供了很多模型和参数,详见 Ollama library⁠ 我这里选择启动的是 llama3 模型 参数量是 8b

bash 复制代码
docker exec -it ollama ollama run llama3.1

首次启动需要下载参数,所以会花费一些时间。

并在光标闪烁的地方开始对话

当然,8b 模型的结果有时候不太好,如果电脑内存在 60G 以上,可以大胆的尝试 70b 的模型。

1.2 通过服务的方式调用 llama3

bash 复制代码
curl http://localhost:11434/api/generate -d '{
  "model": "llama3.1", 
  "prompt": "帮我写一条Elasticsearch的聚合 a 字段的查询语句",
  "format": "json^C
  "stream": false
}'

参数 "model" 表示模型名,一定要 执行过 docker exec -it ollama ollama run 才可以正常响应。这种方式的响应时间比较长,原因有可能是每次请求的时候都会重新启动模型的原因(我并没有找到让模型一直保持启动状态的参数)。API列表

获取响应中的 response 字段就是大模型生成的回答。

二、附录

2.1 Ollama 常用命令

bash 复制代码
Usage:
  ollama [flags]
  ollama [command]

Available Commands:
  serve       Start ollama # 启动ollama
  create      Create a model from a Modelfile # 从模型文件创建模型
  show        Show information for a model # 显示模型信息
  run         Run a model # 运行模型,会先自动下载模型
  pull        Pull a model from a registry # 从注册仓库中拉取模型
  push        Push a model to a registry # 将模型推送到注册仓库
  list        List models # 列出已下载模型
  ps          List running models # 列出正在运行的模型
  cp          Copy a model # 复制模型
  rm          Remove a model # 删除模型
  
  help        Help about any command

Flags:
  -h, --help      help for ollama
  -v, --version   Show version information

Use "ollama [command] --help" for more information about a command.
相关推荐
hanniuniu13几秒前
网络安全厂商F5推出AI Gateway,化解大模型应用风险
人工智能·web安全·gateway
Iamccc13_11 分钟前
智能仓储的未来:自动化、AI与数据分析如何重塑物流中心
人工智能·数据分析·自动化
蹦蹦跳跳真可爱58936 分钟前
Python----目标检测(使用YOLO 模型进行线程安全推理和流媒体源)
人工智能·python·yolo·目标检测·目标跟踪
思尔芯S2C41 分钟前
思尔芯携手Andes晶心科技,加速先进RISC-V 芯片开发
人工智能·科技·fpga开发·risc-v·debugging·prototyping·soc validation
风铃儿~1 小时前
Spring AI 入门:Java 开发者的生成式 AI 实践之路
java·人工智能·spring
晓枫-迷麟1 小时前
【使用conda】安装pytorch
人工智能·pytorch·conda
爱补鱼的猫猫1 小时前
Pytorch知识点2
人工智能·pytorch·python
deephub1 小时前
提升模型泛化能力:PyTorch的L1、L2、ElasticNet正则化技术深度解析与代码实现
人工智能·pytorch·python·深度学习·机器学习·正则化
小于不是小鱼呀2 小时前
手撕 K-Means
人工智能·算法·机器学习