9、Flink 流式概念之状态化更新与演化详解

表程序在流模式下执行将被视为标准查询,即它们被定义一次后将被一直视为静态的端到端 (end-to-end) 管道。

对于这种状态化的管道,对查询和Flink的Planner的改动都有可能导致完全不同的执行计划,这让表程序的状态化的升级和演化在目前而言仍具有挑战,社区正致力于改进这一缺点。

例如为了添加过滤谓词,优化器可能决定重排 join 或改变内部算子的 schema,这会阻碍从 savepoint 的恢复,因为其被改变的拓扑和 算子状态的列布局差异。

查询实现者需要确保改变在优化计划前后是兼容的,在 SQL 中使用 EXPLAIN 或在 Table API 中使用 table.explain() 可获取详情。

由于新的优化器规则正不断地被添加,算子变得更加高效和专用,升级到更新的 Flink 版本可能造成不兼容的计划。

当前框架无法保证状态可以从 savepoint 映射到新的算子拓扑上,Savepoint 只在查询语句和版本保持恒定的情况下被支持。

相关推荐
zhixingheyi_tian29 分钟前
Spark 之 Aggregate
大数据·分布式·spark
PersistJiao29 分钟前
Spark 分布式计算中网络传输和序列化的关系(一)
大数据·网络·spark
宅小海3 小时前
scala String
大数据·开发语言·scala
小白的白是白痴的白3 小时前
11.17 Scala练习:梦想清单管理
大数据
java1234_小锋4 小时前
Elasticsearch是如何实现Master选举的?
大数据·elasticsearch·搜索引擎
宝哥大数据4 小时前
Flink Joins
flink
Java 第一深情8 小时前
零基础入门Flink,掌握基本使用方法
大数据·flink·实时计算
我的K84098 小时前
Flink整合Hudi及使用
linux·服务器·flink
MXsoft6188 小时前
华为服务器(iBMC)硬件监控指标解读
大数据·运维·数据库
PersistJiao9 小时前
Spark 分布式计算中网络传输和序列化的关系(二)
大数据·网络·spark·序列化·分布式计算