colmap的几种相机类型和内外参取得方法

colmap的相机类型可以参考models.h文件。

主要有以下几种相机类型:

SimplePinhole:

内参格式:f, cx, cy

实际用的时候:fx=fy=f


Pinhole:

内参格式:fx, fy, cx, cy

其他可以自行查看models.h文件。

内参存放在images.bin, 外参存放在cameras.bin中

python 复制代码
def read_colmap(path):
    try:
        cameras_extrinsic_file = os.path.join(path, "sparse/0", "images.bin")
        cameras_intrinsic_file = os.path.join(path, "sparse/0", "cameras.bin")
        cam_extrinsics = read_extrinsics_binary(cameras_extrinsic_file)
        cam_intrinsics = read_intrinsics_binary(cameras_intrinsic_file)
    except:
        cameras_extrinsic_file = os.path.join(path, "sparse/0", "images.txt")
        cameras_intrinsic_file = os.path.join(path, "sparse/0", "cameras.txt")
        cam_extrinsics = read_extrinsics_text(cameras_extrinsic_file)
        cam_intrinsics = read_intrinsics_text(cameras_intrinsic_file)

extr = cam_extrinsics[key]
intr = cam_intrinsics[extr.camera_id]

R = qvec2rotmat(extr.qvec)
t = np.array(extr.tvec)

#world to camera
T = np.zeros((4, 4))
T[:3, :3] = R
T[:3, 3] = t
T[3, 3] = 1.0

def qvec2rotmat(qvec):
    return np.array([
        [1 - 2 * qvec[2]**2 - 2 * qvec[3]**2,
         2 * qvec[1] * qvec[2] - 2 * qvec[0] * qvec[3],
         2 * qvec[3] * qvec[1] + 2 * qvec[0] * qvec[2]],
        [2 * qvec[1] * qvec[2] + 2 * qvec[0] * qvec[3],
         1 - 2 * qvec[1]**2 - 2 * qvec[3]**2,
         2 * qvec[2] * qvec[3] - 2 * qvec[0] * qvec[1]],
        [2 * qvec[3] * qvec[1] - 2 * qvec[0] * qvec[2],
         2 * qvec[2] * qvec[3] + 2 * qvec[0] * qvec[1],
         1 - 2 * qvec[1]**2 - 2 * qvec[2]**2]])

如果是SimplePinhole,

那么,fx = fy = intr[0], cx = intr[1], cy = intr[2]

其他类推。

相关推荐
寒秋丶5 小时前
Milvus:向量字段-二进制向量、稀疏向量与密集向量(六)
数据库·人工智能·python·ai·ai编程·milvus·向量数据库
寒秋丶5 小时前
Milvus:通过Docker安装Milvus向量数据库(一)
数据库·人工智能·docker·ai·ai编程·milvus·rag
珊珊而川5 小时前
MAC-SQL 论文翻译
人工智能
闻缺陷则喜何志丹6 小时前
【超音速专利 CN118134841A】一种光伏产品缺陷检测AI深度学习算法
人工智能·深度学习·算法·专利·光伏·超音速
Coovally AI模型快速验证6 小时前
超越传统3D生成:OccScene实现感知与生成的跨任务共赢
人工智能·深度学习·机器学习·计算机视觉·3d·目标跟踪
AiTop1006 小时前
美团LongCat-Flash-Omni上线:5600亿参数实现音视频交互“零延迟”
人工智能·ai·aigc·音视频·交互
IT_陈寒6 小时前
Vite 5震撼发布!10个新特性让你的开发效率飙升200% 🚀
前端·人工智能·后端
万俟淋曦6 小时前
NVIDIA DriveOS 推动新一代智能汽车实现突破
人工智能·ai·汽车·nvidia·智能汽车·driveos·driveworks
rengang666 小时前
14-循环神经网络(RNN):分析RNN在序列数据中的表现和特点
人工智能·rnn·深度学习
Toky丶7 小时前
具身智能(一)关于VLA模型π0
人工智能