colmap的几种相机类型和内外参取得方法

colmap的相机类型可以参考models.h文件。

主要有以下几种相机类型:

SimplePinhole:

内参格式:f, cx, cy

实际用的时候:fx=fy=f


Pinhole:

内参格式:fx, fy, cx, cy

其他可以自行查看models.h文件。

内参存放在images.bin, 外参存放在cameras.bin中

python 复制代码
def read_colmap(path):
    try:
        cameras_extrinsic_file = os.path.join(path, "sparse/0", "images.bin")
        cameras_intrinsic_file = os.path.join(path, "sparse/0", "cameras.bin")
        cam_extrinsics = read_extrinsics_binary(cameras_extrinsic_file)
        cam_intrinsics = read_intrinsics_binary(cameras_intrinsic_file)
    except:
        cameras_extrinsic_file = os.path.join(path, "sparse/0", "images.txt")
        cameras_intrinsic_file = os.path.join(path, "sparse/0", "cameras.txt")
        cam_extrinsics = read_extrinsics_text(cameras_extrinsic_file)
        cam_intrinsics = read_intrinsics_text(cameras_intrinsic_file)

extr = cam_extrinsics[key]
intr = cam_intrinsics[extr.camera_id]

R = qvec2rotmat(extr.qvec)
t = np.array(extr.tvec)

#world to camera
T = np.zeros((4, 4))
T[:3, :3] = R
T[:3, 3] = t
T[3, 3] = 1.0

def qvec2rotmat(qvec):
    return np.array([
        [1 - 2 * qvec[2]**2 - 2 * qvec[3]**2,
         2 * qvec[1] * qvec[2] - 2 * qvec[0] * qvec[3],
         2 * qvec[3] * qvec[1] + 2 * qvec[0] * qvec[2]],
        [2 * qvec[1] * qvec[2] + 2 * qvec[0] * qvec[3],
         1 - 2 * qvec[1]**2 - 2 * qvec[3]**2,
         2 * qvec[2] * qvec[3] - 2 * qvec[0] * qvec[1]],
        [2 * qvec[3] * qvec[1] - 2 * qvec[0] * qvec[2],
         2 * qvec[2] * qvec[3] + 2 * qvec[0] * qvec[1],
         1 - 2 * qvec[1]**2 - 2 * qvec[2]**2]])

如果是SimplePinhole,

那么,fx = fy = intr[0], cx = intr[1], cy = intr[2]

其他类推。

相关推荐
阿里云云原生8 分钟前
Qoder 全新「上下文压缩」功能正式上线,省 Credits !
人工智能
我星期八休息22 分钟前
深入理解跳表(Skip List):原理、实现与应用
开发语言·数据结构·人工智能·python·算法·list
蒋星熠31 分钟前
如何在Anaconda中配置你的CUDA & Pytorch & cuNN环境(2025最新教程)
开发语言·人工智能·pytorch·python·深度学习·机器学习·ai
Hcoco_me1 小时前
什么是机器学习?
人工智能·机器学习
Code_流苏1 小时前
AI热点周报(9.7~9.13):阿里Qwen3-Next震撼发布、Claude 增强记忆与服务抖动、OpenAI 聚焦模型规范化...
人工智能·gpt·ai·openai·claude·qwen3-next·架构创新
合作小小程序员小小店1 小时前
机器学习介绍
人工智能·python·机器学习·scikit-learn·安全威胁分析
这张生成的图像能检测吗1 小时前
(综述)视觉任务的视觉语言模型
人工智能·计算机视觉·语言模型·自然语言处理·视觉语言模型
聚客AI1 小时前
🚫万能Agent兜底:当规划缺失工具时,AI如何自救
人工智能·llm·agent
Juchecar1 小时前
一文讲清 nn.Module 中 forward 函数被调用时机
人工智能
七牛云行业应用2 小时前
深度解析强化学习(RL):原理、算法与金融应用
人工智能·算法·金融