从行或列的角度思考矩阵-向量乘法(matrix-vector multiplication)

从行或列的角度思考矩阵-向量乘法可以帮助理解这个运算的几何意义以及如何在计算中操作。

1. 从行的角度思考

假设我们有一个 m × n m \times n m×n的矩阵 A A A 和一个 n × 1 n \times 1 n×1的列向量 x \mathbf{x} x。矩阵-向量乘法 A x A\mathbf{x} Ax 的结果是一个 m × 1 m \times 1 m×1的列向量。

从行的角度来看,每个结果向量的元素都是矩阵 A A A 中对应行的线性组合。具体地说:

  • 矩阵 A A A 的第 i i i 行向量 a i \mathbf{a}_i ai 与向量 x \mathbf{x} x 进行点积,得到结果向量 y \mathbf{y} y 的第 i i i 个元素 y i y_i yi 。
  • 公式表示为:
    y i = a i ⋅ x = ∑ j = 1 n a i j x j y_i = \mathbf{a}i \cdot \mathbf{x} = \sum{j=1}^{n} a_{ij} x_j yi=ai⋅x=j=1∑naijxj
  • 这意味着矩阵-向量乘法的结果 y \mathbf{y} y 是所有行向量与 x \mathbf{x} x点积后所得的列向量。

2. 从列的角度思考

同样,考虑矩阵 A A A和向量 x \mathbf{x} x的乘法 A x A\mathbf{x} Ax,但是从列的角度来看。

  • 矩阵 A A A可以表示为 n n n 个列向量 a 1 , a 2 , ... , a n \mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n a1,a2,...,an的组合。
  • 乘法 A x A\mathbf{x} Ax 实际上是将列向量 a i \mathbf{a}_i ai 乘以标量 x i x_i xi 并求和:
    A x = x 1 a 1 + x 2 a 2 + ⋯ + x n a n A\mathbf{x} = x_1 \mathbf{a}_1 + x_2 \mathbf{a}_2 + \dots + x_n \mathbf{a}_n Ax=x1a1+x2a2+⋯+xnan
  • 这意味着矩阵-向量乘法的结果 y \mathbf{y} y是矩阵 A A A的每个列向量 a i \mathbf{a}_i ai按 x i x_i xi加权后的线性组合。

小结

  • 行视角:每个结果元素是矩阵行向量和列向量的点积。
  • 列视角:结果向量是矩阵列向量的线性组合,其中组合系数由列向量中的对应元素给出。

通过从行和列两个角度去理解矩阵-向量乘法,可以更深入地把握矩阵运算的本质以及其在不同应用场景中的几何意义。

相关推荐
聆风吟º10 小时前
CANN runtime 全链路拆解:AI 异构计算运行时的任务管理与功能适配技术路径
人工智能·深度学习·神经网络·cann
User_芊芊君子11 小时前
CANN大模型推理加速引擎ascend-transformer-boost深度解析:毫秒级响应的Transformer优化方案
人工智能·深度学习·transformer
智驱力人工智能11 小时前
小区高空抛物AI实时预警方案 筑牢社区头顶安全的实践 高空抛物检测 高空抛物监控安装教程 高空抛物误报率优化方案 高空抛物监控案例分享
人工智能·深度学习·opencv·算法·安全·yolo·边缘计算
人工不智能57711 小时前
拆解 BERT:Output 中的 Hidden States 到底藏了什么秘密?
人工智能·深度学习·bert
h64648564h12 小时前
CANN 性能剖析与调优全指南:从 Profiling 到 Kernel 级优化
人工智能·深度学习
心疼你的一切12 小时前
解密CANN仓库:AIGC的算力底座、关键应用与API实战解析
数据仓库·深度学习·aigc·cann
Σίσυφος190013 小时前
PCL 法向量估计-PCA邻域点(经典 kNN 协方差)的协方差矩阵
人工智能·线性代数·矩阵
学电子她就能回来吗14 小时前
深度学习速成:损失函数与反向传播
人工智能·深度学习·学习·计算机视觉·github
Coder_Boy_14 小时前
TensorFlow小白科普
人工智能·深度学习·tensorflow·neo4j
大模型玩家七七14 小时前
梯度累积真的省显存吗?它换走的是什么成本
java·javascript·数据库·人工智能·深度学习