从行或列的角度思考矩阵-向量乘法(matrix-vector multiplication)

从行或列的角度思考矩阵-向量乘法可以帮助理解这个运算的几何意义以及如何在计算中操作。

1. 从行的角度思考

假设我们有一个 m × n m \times n m×n的矩阵 A A A 和一个 n × 1 n \times 1 n×1的列向量 x \mathbf{x} x。矩阵-向量乘法 A x A\mathbf{x} Ax 的结果是一个 m × 1 m \times 1 m×1的列向量。

从行的角度来看,每个结果向量的元素都是矩阵 A A A 中对应行的线性组合。具体地说:

  • 矩阵 A A A 的第 i i i 行向量 a i \mathbf{a}_i ai 与向量 x \mathbf{x} x 进行点积,得到结果向量 y \mathbf{y} y 的第 i i i 个元素 y i y_i yi 。
  • 公式表示为:
    y i = a i ⋅ x = ∑ j = 1 n a i j x j y_i = \mathbf{a}i \cdot \mathbf{x} = \sum{j=1}^{n} a_{ij} x_j yi=ai⋅x=j=1∑naijxj
  • 这意味着矩阵-向量乘法的结果 y \mathbf{y} y 是所有行向量与 x \mathbf{x} x点积后所得的列向量。

2. 从列的角度思考

同样,考虑矩阵 A A A和向量 x \mathbf{x} x的乘法 A x A\mathbf{x} Ax,但是从列的角度来看。

  • 矩阵 A A A可以表示为 n n n 个列向量 a 1 , a 2 , ... , a n \mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n a1,a2,...,an的组合。
  • 乘法 A x A\mathbf{x} Ax 实际上是将列向量 a i \mathbf{a}_i ai 乘以标量 x i x_i xi 并求和:
    A x = x 1 a 1 + x 2 a 2 + ⋯ + x n a n A\mathbf{x} = x_1 \mathbf{a}_1 + x_2 \mathbf{a}_2 + \dots + x_n \mathbf{a}_n Ax=x1a1+x2a2+⋯+xnan
  • 这意味着矩阵-向量乘法的结果 y \mathbf{y} y是矩阵 A A A的每个列向量 a i \mathbf{a}_i ai按 x i x_i xi加权后的线性组合。

小结

  • 行视角:每个结果元素是矩阵行向量和列向量的点积。
  • 列视角:结果向量是矩阵列向量的线性组合,其中组合系数由列向量中的对应元素给出。

通过从行和列两个角度去理解矩阵-向量乘法,可以更深入地把握矩阵运算的本质以及其在不同应用场景中的几何意义。

相关推荐
BB_CC_DD13 分钟前
四. 以Annoy算法建树的方式聚类清洗图像数据集,一次建树,无限次聚类搜索,提升聚类搜索效率。(附完整代码)
深度学习·算法·聚类
Blossom.1181 小时前
人工智能在智能家居中的应用与发展
人工智能·深度学习·机器学习·智能家居·vr·虚拟现实·多模态融合
HyperAI超神经2 小时前
12个HPC教程汇总!从入门到实战,覆盖分子模拟/材料计算/生物信息分析等多个领域
图像处理·人工智能·深度学习·生物信息·分子模拟·材料计算·vasp
进来有惊喜2 小时前
深度学习:迁移学习
python·深度学习
豆芽8192 小时前
图解YOLO(You Only Look Once)目标检测(v1-v5)
人工智能·深度学习·学习·yolo·目标检测·计算机视觉
北上ing3 小时前
从FP32到BF16,再到混合精度的全景解析
人工智能·pytorch·深度学习·计算机视觉·stable diffusion
蔗理苦3 小时前
2025-04-24 Python&深度学习4—— 计算图与动态图机制
开发语言·pytorch·python·深度学习·计算图
m0_678693333 小时前
深度学习笔记22-RNN心脏病预测(Tensorflow)
笔记·rnn·深度学习
Y1nhl9 小时前
搜广推校招面经八十一
开发语言·人工智能·pytorch·深度学习·机器学习·推荐算法·搜索算法
鸿蒙布道师13 小时前
OpenAI为何觊觎Chrome?AI时代浏览器争夺战背后的深层逻辑
前端·人工智能·chrome·深度学习·opencv·自然语言处理·chatgpt