从行或列的角度思考矩阵-向量乘法(matrix-vector multiplication)

从行或列的角度思考矩阵-向量乘法可以帮助理解这个运算的几何意义以及如何在计算中操作。

1. 从行的角度思考

假设我们有一个 m × n m \times n m×n的矩阵 A A A 和一个 n × 1 n \times 1 n×1的列向量 x \mathbf{x} x。矩阵-向量乘法 A x A\mathbf{x} Ax 的结果是一个 m × 1 m \times 1 m×1的列向量。

从行的角度来看,每个结果向量的元素都是矩阵 A A A 中对应行的线性组合。具体地说:

  • 矩阵 A A A 的第 i i i 行向量 a i \mathbf{a}_i ai 与向量 x \mathbf{x} x 进行点积,得到结果向量 y \mathbf{y} y 的第 i i i 个元素 y i y_i yi 。
  • 公式表示为:
    y i = a i ⋅ x = ∑ j = 1 n a i j x j y_i = \mathbf{a}i \cdot \mathbf{x} = \sum{j=1}^{n} a_{ij} x_j yi=ai⋅x=j=1∑naijxj
  • 这意味着矩阵-向量乘法的结果 y \mathbf{y} y 是所有行向量与 x \mathbf{x} x点积后所得的列向量。

2. 从列的角度思考

同样,考虑矩阵 A A A和向量 x \mathbf{x} x的乘法 A x A\mathbf{x} Ax,但是从列的角度来看。

  • 矩阵 A A A可以表示为 n n n 个列向量 a 1 , a 2 , ... , a n \mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n a1,a2,...,an的组合。
  • 乘法 A x A\mathbf{x} Ax 实际上是将列向量 a i \mathbf{a}_i ai 乘以标量 x i x_i xi 并求和:
    A x = x 1 a 1 + x 2 a 2 + ⋯ + x n a n A\mathbf{x} = x_1 \mathbf{a}_1 + x_2 \mathbf{a}_2 + \dots + x_n \mathbf{a}_n Ax=x1a1+x2a2+⋯+xnan
  • 这意味着矩阵-向量乘法的结果 y \mathbf{y} y是矩阵 A A A的每个列向量 a i \mathbf{a}_i ai按 x i x_i xi加权后的线性组合。

小结

  • 行视角:每个结果元素是矩阵行向量和列向量的点积。
  • 列视角:结果向量是矩阵列向量的线性组合,其中组合系数由列向量中的对应元素给出。

通过从行和列两个角度去理解矩阵-向量乘法,可以更深入地把握矩阵运算的本质以及其在不同应用场景中的几何意义。

相关推荐
图片转成excel表格1 小时前
WPS Office Excel 转 PDF 后图片丢失的解决方法
人工智能·科技·深度学习
李歘歘2 小时前
万字长文解读深度学习——多模态模型CLIP、BLIP、ViLT
人工智能·深度学习
B站计算机毕业设计超人3 小时前
计算机毕业设计Python+大模型农产品价格预测 ARIMA自回归模型 农产品可视化 农产品爬虫 机器学习 深度学习 大数据毕业设计 Django Flask
大数据·爬虫·python·深度学习·机器学习·课程设计·数据可视化
新手小白勇闯新世界3 小时前
深度学习知识点5-马尔可夫链
人工智能·深度学习·计算机视觉
热爱生活的五柒4 小时前
深度学习:利用随机数据更快地测试一个新的模型在自己数据格式很复杂的时候
人工智能·深度学习
科研实践课堂(公众号名称)4 小时前
基于OpenFOAM和深度学习驱动的流体力学计算与应用
人工智能·深度学习
LittroInno5 小时前
TofuAI处理BT1120时序视频要求
深度学习·计算机视觉·tofu
CSBLOG5 小时前
Day15上 - RNN的使用,评论分析,情感识别
人工智能·rnn·深度学习
RootKai5 小时前
深度学习的核心思想
人工智能·深度学习