从行或列的角度思考矩阵-向量乘法(matrix-vector multiplication)

从行或列的角度思考矩阵-向量乘法可以帮助理解这个运算的几何意义以及如何在计算中操作。

1. 从行的角度思考

假设我们有一个 m × n m \times n m×n的矩阵 A A A 和一个 n × 1 n \times 1 n×1的列向量 x \mathbf{x} x。矩阵-向量乘法 A x A\mathbf{x} Ax 的结果是一个 m × 1 m \times 1 m×1的列向量。

从行的角度来看,每个结果向量的元素都是矩阵 A A A 中对应行的线性组合。具体地说:

  • 矩阵 A A A 的第 i i i 行向量 a i \mathbf{a}_i ai 与向量 x \mathbf{x} x 进行点积,得到结果向量 y \mathbf{y} y 的第 i i i 个元素 y i y_i yi 。
  • 公式表示为:
    y i = a i ⋅ x = ∑ j = 1 n a i j x j y_i = \mathbf{a}i \cdot \mathbf{x} = \sum{j=1}^{n} a_{ij} x_j yi=ai⋅x=j=1∑naijxj
  • 这意味着矩阵-向量乘法的结果 y \mathbf{y} y 是所有行向量与 x \mathbf{x} x点积后所得的列向量。

2. 从列的角度思考

同样,考虑矩阵 A A A和向量 x \mathbf{x} x的乘法 A x A\mathbf{x} Ax,但是从列的角度来看。

  • 矩阵 A A A可以表示为 n n n 个列向量 a 1 , a 2 , ... , a n \mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n a1,a2,...,an的组合。
  • 乘法 A x A\mathbf{x} Ax 实际上是将列向量 a i \mathbf{a}_i ai 乘以标量 x i x_i xi 并求和:
    A x = x 1 a 1 + x 2 a 2 + ⋯ + x n a n A\mathbf{x} = x_1 \mathbf{a}_1 + x_2 \mathbf{a}_2 + \dots + x_n \mathbf{a}_n Ax=x1a1+x2a2+⋯+xnan
  • 这意味着矩阵-向量乘法的结果 y \mathbf{y} y是矩阵 A A A的每个列向量 a i \mathbf{a}_i ai按 x i x_i xi加权后的线性组合。

小结

  • 行视角:每个结果元素是矩阵行向量和列向量的点积。
  • 列视角:结果向量是矩阵列向量的线性组合,其中组合系数由列向量中的对应元素给出。

通过从行和列两个角度去理解矩阵-向量乘法,可以更深入地把握矩阵运算的本质以及其在不同应用场景中的几何意义。

相关推荐
呆头鹅AI工作室21 分钟前
[2025CVPR]SEEN-DA:基于语义熵引导的领域感知注意力机制
人工智能·深度学习·机器学习
西柚小萌新42 分钟前
【深度学习:进阶篇】--4.3.seq2seq与Attention机制
人工智能·深度学习
求索小沈43 分钟前
ubuntu22.04 安装cuda cudnn
人工智能·深度学习
FF-Studio1 小时前
【硬核数学】3. AI如何应对不确定性?概率论为模型注入“灵魂”《从零构建机器学习、深度学习到LLM的数学认知》
大数据·人工智能·深度学习·机器学习·数学建模·自然语言处理·概率论
CoovallyAIHub2 小时前
YOLOv13都来了,目标检测还卷得动吗?别急,还有这些新方向!
深度学习·算法·计算机视觉
盛寒3 小时前
矩阵的定义和运算 线性代数
线性代数
盛寒3 小时前
初等变换 线性代数
线性代数
叶子爱分享6 小时前
浅谈「线性代数的本质」 - 系列合集
线性代数
luofeiju6 小时前
RGB下的色彩变换:用线性代数解构色彩世界
图像处理·人工智能·opencv·线性代数
网安INF7 小时前
深度学习中的逻辑回归:从原理到Python实现
人工智能·python·深度学习·算法·逻辑回归