YOLO数据处理
一.YOLO数据格式
YOLO数据格式为 <class> <x_center> <y_center> <width> <height>
二.制作数据集
1.新建文件夹及配置文件
python
if not os.path.exists('yolo-dataset/'):
os.mkdir('yolo-dataset/')
if not os.path.exists('yolo-dataset/train'):
os.mkdir('yolo-dataset/train')
if not os.path.exists('yolo-dataset/val'):
os.mkdir('yolo-dataset/val')
dir_path = os.path.abspath('./') + '/'
# 需要按照你的修改path
with open('yolo-dataset/yolo.yaml', 'w', encoding='utf-8') as up:
up.write(f'''
path: {dir_path}/yolo-dataset/
train: train/
val: val/
names:
0: 非机动车违停
1: 机动车违停
2: 垃圾桶满溢
3: 违法经营
''')
2.数据转化
(1) 原始数据集
视频数据为mp4格式,标注文件为json格式,每个视频对应一个json文件。
json文件的内容是每帧检测到的违规行为,包括以下字段:
- frame_id:违规行为出现的帧编号
- event_id:违规行为ID
- category:违规行为类别
- bbox:检测到的违规行为矩形框的坐标,[xmin,ymin,xmax,ymax]形式
标注示例如下:
json
[
{
"frame_id": 20,
"event_id": 1,
"category": "机动车违停",
"bbox": [200, 300, 280, 400]
},
{
"frame_id": 20,
"event_id": 2,
"category": "机动车违停",
"bbox": [600, 500, 720, 560]
},
{
"frame_id": 30,
"event_id": 3,
"category": "垃圾桶满溢",
"bbox": [400, 500, 600, 660]
}
]
(2) 数据格式转化
遍历读取每个视频的每一帧,保存视频的每一个帧及根据帧的id找出对应的标签写入对应的txt文件。
json文件标注[xmin,ymin,xmax,ymax],而YOLO所需格式为【x_center,y_center,width,height】格式,因此在写入txt文件前需要进行格式转化
python
train_annos = glob.glob('训练集(有标注第一批)/标注/*.json')
train_videos = glob.glob('训练集(有标注第一批)/视频/*.mp4')
train_annos.sort(); train_videos.sort()
category_labels = ["非机动车违停", "机动车违停", "垃圾桶满溢", "违法经营"]
for anno_path, video_path in zip(train_annos[:5], train_videos[:5]):
print(video_path)
anno_df = pd.read_json(anno_path)
cap = cv2.VideoCapture(video_path)
frame_idx = 0
while True:
ret, frame = cap.read()
if not ret:
break
img_height, img_width = frame.shape[:2]
frame_anno = anno_df[anno_df['frame_id'] == frame_idx]
cv2.imwrite('./yolo-dataset/train/' + anno_path.split('/')[-1][:-5] + '_' + str(frame_idx) + '.jpg', frame)
if len(frame_anno) != 0:
with open('./yolo-dataset/train/' + anno_path.split('/')[-1][:-5] + '_' + str(frame_idx) + '.txt', 'w') as up:
for category, bbox in zip(frame_anno['category'].values, frame_anno['bbox'].values):
category_idx = category_labels.index(category)
x_min, y_min, x_max, y_max = bbox
x_center = (x_min + x_max) / 2 / img_width
y_center = (y_min + y_max) / 2 / img_height
width = (x_max - x_min) / img_width
height = (y_max - y_min) / img_height
if x_center > 1:
print(bbox)
up.write(f'{category_idx} {x_center} {y_center} {width} {height}\n')
frame_idx += 1
三. 模型训练
python
from ultralytics import YOLO
model = YOLO("yolov8n.pt")
results = model.train(data="yolo-dataset/yolo.yaml", epochs=2, imgsz=1080, batch=16)
四. 模型输出
根据result.boxes.xyxy 的格式为【x_min,y_min,x_max,y_max】,因此保存json时无须转换。
python
from ultralytics import YOLO
model = YOLO("runs/detect/train/weights/best.pt")
import glob
for path in glob.glob('测试集/*.mp4'):
submit_json = []
results = model(path, conf=0.05, imgsz=1080, verbose=False)
for idx, result in enumerate(results):
boxes = result.boxes # Boxes object for bounding box outputs
masks = result.masks # Masks object for segmentation masks outputs
keypoints = result.keypoints # Keypoints object for pose outputs
probs = result.probs # Probs object for classification outputs
obb = result.obb # Oriented boxes object for OBB outputs
if len(boxes.cls) == 0:
continue
xyxy = boxes.xyxy.data.cpu().numpy().round()
cls = boxes.cls.data.cpu().numpy().round()
conf = boxes.conf.data.cpu().numpy()
for i, (ci, xy, confi) in enumerate(zip(cls, xyxy, conf)):
submit_json.append(
{
'frame_id': idx,
'event_id': i+1,
'category': category_labels[int(ci)],
'bbox': list([int(x) for x in xy]),
"confidence": float(confi)
}
)
with open('./result/' + path.split('/')[-1][:-4] + '.json', 'w', encoding='utf-8') as up:
json.dump(submit_json, up, indent=4, ensure_ascii=False)