字符串压缩算法

目录

RLE(游程长度编码)

算法原理

步骤说明

示例说明

代码示例

python语言:

C语言:

优缺点

Huffman编码

基本原理

构造Huffman树

编码与解码过程

代码示例

python语言:

C语言:

优缺点

LZW压缩

字典构建与压缩过程

步骤说明

代码示例

python语言:

C语言:

优缺点


字符串压缩算法用于减少字符串的存储空间,尤其是在需要传输或保存大量文本数据时。以下是三种常见的字符串压缩算法:RLE、Huffman编码和LZW压缩。

RLE(游程长度编码)

算法原理

游程长度编码(Run-Length Encoding,RLE)是一种简单的压缩算法,主要针对字符串中连续重复的字符。该算法通过记录每个字符的重复次数来实现压缩。

步骤说明

  1. 遍历字符串,记录每个字符及其连续出现的次数。
  2. 生成一个新的字符串,其中每个字符后面跟着其出现的次数。

示例说明

考虑字符串 "AAAABBBCCDAA"

  • 第1步:找到字符 A 连续出现了4次,记为 "4A"
  • 第2步:找到字符 B 连续出现了3次,记为 "3B"
  • 第3步:字符 C 连续出现2次,记为 "2C"
  • 第4步:字符 D 出现1次,记为 "1D"
  • 第5步:字符 A 连续出现2次,记为 "2A"

最终压缩结果为 "4A3B2C1D2A"

代码示例

python语言:

python 复制代码
def rle_encode(data):
    encoding = ''
    i = 0

    while i < len(data):
        count = 1
        while i + 1 < len(data) and data[i] == data[i + 1]:
            i += 1
            count += 1
        encoding += str(count) + data[i]
        i += 1

    return encoding

# 示例使用
input_string = "AAAABBBCCDAA"
encoded_string = rle_encode(input_string)
print(encoded_string)  # 输出: "4A3B2C1D2A"

C语言:

objectivec 复制代码
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

char *rleEncode(const char *data) {
    int dataLength = strlen(data);
    char *encoding = (char *)malloc(2 * dataLength * sizeof(char));
    int encodingIndex = 0;
    int i = 0;

    while (i < dataLength) {
        int count = 1;
        while (i + 1 < dataLength && data[i] == data[i + 1]) {
            i++;
            count++;
        }
        int countDigits = 0;
        int tempCount = count;
        while (tempCount > 0) {
            tempCount /= 10;
            countDigits++;
        }

        int digitIndex = countDigits;
        tempCount = count;
        while (tempCount > 0) {
            encoding[encodingIndex + digitIndex--] = '0' + tempCount % 10;
            tempCount /= 10;
        }

        encoding[encodingIndex + countDigits] = data[i];
        encodingIndex += countDigits + 1;
        i++;
    }

    encoding[encodingIndex] = '\0';
    return encoding;
}

int main() {
    const char *inputString = "AAAABBBCCDAA";
    char *encodedString = rleEncode(inputString);
    printf("%s\n", encodedString);
    free(encodedString);
    return 0;
}

优缺点

  • 优点:RLE算法实现简单,适用于字符重复较多的场景。
  • 缺点:对于字符重复较少的字符串,RLE可能会增加字符串的长度而非压缩。

Huffman编码

基本原理

Huffman编码是一种基于字符出现频率的无损压缩算法。它通过构建一棵Huffman树,为出现频率较高的字符分配较短的二进制编码,频率较低的字符分配较长的二进制编码,从而达到压缩的目的。

构造Huffman树

  1. 计算每个字符的出现频率。
  2. 创建一个优先队列,将每个字符及其频率作为一个叶节点插入队列。
  3. 取出队列中频率最低的两个节点,创建一个新的父节点,其频率为两个节点频率之和,并将该父节点插回队列。
  4. 重复步骤3,直到队列中只剩下一个节点,该节点即为Huffman树的根节点。

编码与解码过程

  • 编码 :从根节点出发,沿着树向下遍历,每向左走一步,记为 0,向右走一步,记为 1,直到达到叶节点。这样,每个字符都有一个唯一的二进制编码。
  • 解码:从压缩后的二进制字符串出发,沿着Huffman树进行解码,直到恢复出原始字符串。

代码示例

python语言:

python 复制代码
import heapq
from collections import defaultdict, Counter

class HuffmanNode:
    def __init__(self, char, freq):
        self.char = char
        self.freq = freq
        self.left = None
        self.right = None

    def __lt__(self, other):
        return self.freq < other.freq

def build_huffman_tree(text):
    frequency = Counter(text)
    heap = [HuffmanNode(char, freq) for char, freq in frequency.items()]
    heapq.heapify(heap)

    while len(heap) > 1:
        node1 = heapq.heappop(heap)
        node2 = heapq.heappop(heap)
        merged = HuffmanNode(None, node1.freq + node2.freq)
        merged.left = node1
        merged.right = node2
        heapq.heappush(heap, merged)

    return heap[0]

def build_codes(node, prefix='', codebook={}):
    if node is not None:
        if node.char is not None:
            codebook[node.char] = prefix
        build_codes(node.left, prefix + '0', codebook)
        build_codes(node.right, prefix + '1', codebook)
    return codebook

def huffman_encode(text):
    root = build_huffman_tree(text)
    codebook = build_codes(root)
    return ''.join(codebook[char] for char in text), codebook

# 示例使用
text = "AAAABBBCCDAA"
encoded_text, huffman_codebook = huffman_encode(text)
print(f"Encoded: {encoded_text}")  # 输出压缩后的二进制字符串
print(f"Codebook: {huffman_codebook}")  # 输出字符到二进制的映射

C语言:

objectivec 复制代码
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

// 哈夫曼树节点结构体
typedef struct HuffmanNode {
    char character;
    int frequency;
    struct HuffmanNode *left;
    struct HuffmanNode *right;
} HuffmanNode;

// 创建新的哈夫曼节点
HuffmanNode *createHuffmanNode(char character, int frequency) {
    HuffmanNode *newNode = (HuffmanNode *)malloc(sizeof(HuffmanNode));
    newNode->character = character;
    newNode->frequency = frequency;
    newNode->left = NULL;
    newNode->right = NULL;
    return newNode;
}

// 交换两个哈夫曼节点
void swapHuffmanNodes(HuffmanNode **a, HuffmanNode **b) {
    HuffmanNode *temp = *a;
    *a = *b;
    *b = temp;
}

// 下调整个最小堆,保持堆的性质
void minHeapify(HuffmanNode **heap, int size, int index) {
    int smallest = index;
    int left = 2 * index + 1;
    int right = 2 * index + 2;

    if (left < size && heap[left]->frequency < heap[smallest]->frequency)
        smallest = left;

    if (right < size && heap[right]->frequency < heap[smallest]->frequency)
        smallest = right;

    if (smallest!= index) {
        swapHuffmanNodes(&heap[index], &heap[smallest]);
        minHeapify(heap, size, smallest);
    }
}

// 构建最小堆
void buildMinHeap(HuffmanNode **heap, int size) {
    for (int i = (size / 2) - 1; i >= 0; i--)
        minHeapify(heap, size, i);
}

// 提取最小频率的节点
HuffmanNode *extractMin(HuffmanNode **heap, int *size) {
    if (*size <= 0)
        return NULL;

    HuffmanNode *minNode = heap[0];
    heap[0] = heap[(*size) - 1];
    (*size)--;
    minHeapify(heap, *size, 0);
    return minNode;
}

// 插入节点到最小堆
void insertNode(HuffmanNode **heap, int *size, HuffmanNode *node) {
    (*size)++;
    int i = (*size) - 1;

    while (i && node->frequency < heap[(i - 1) / 2]->frequency) {
        heap[i] = heap[(i - 1) / 2];
        i = (i - 1) / 2;
    }

    heap[i] = node;
}

// 构建哈夫曼树
HuffmanNode *buildHuffmanTree(char *text) {
    int frequency[256] = {0};
    int length = strlen(text);

    for (int i = 0; i < length; i++)
        frequency[(int)text[i]]++;

    HuffmanNode **heap = (HuffmanNode **)malloc(length * sizeof(HuffmanNode *));
    int size = 0;

    for (int i = 0; i < 256; i++) {
        if (frequency[i] > 0) {
            heap[size++] = createHuffmanNode((char)i, frequency[i]);
        }
    }

    buildMinHeap(heap, size);

    while (size > 1) {
        HuffmanNode *left = extractMin(heap, &size);
        HuffmanNode *right = extractMin(heap, &size);

        HuffmanNode *merged = createHuffmanNode('\0', left->frequency + right->frequency);
        merged->left = left;
        merged->right = right;

        insertNode(heap, &size, merged);
    }

    HuffmanNode *root = extractMin(heap, &size);
    free(heap);

    return root;
}

// 深度优先遍历构建编码表
void buildCodes(HuffmanNode *root, char *prefix, int prefixLength, char **codebook) {
    if (root->left) {
        prefix[prefixLength] = '0';
        buildCodes(root->left, prefix, prefixLength + 1, codebook);
    }

    if (root->right) {
        prefix[prefixLength] = '1';
        buildCodes(root->right, prefix, prefixLength + 1, codebook);
    }

    if (root->character!= '\0') {
        prefix[prefixLength] = '\0';
        codebook[(int)root->character] = strdup(prefix);
    }
}

// 哈夫曼编码函数
void huffmanEncode(char *text) {
    HuffmanNode *root = buildHuffmanTree(text);

    char prefix[256] = {0};
    char **codebook = (char **)malloc(256 * sizeof(char *));

    buildCodes(root, prefix, 0, codebook);

    printf("Encoded: ");
    int length = strlen(text);
    for (int i = 0; i < length; i++) {
        printf("%s", codebook[(int)text[i]]);
    }
    printf("\n");

    printf("Codebook:\n");
    for (int i = 0; i < 256; i++) {
        if (codebook[i]!= NULL) {
            printf("%c: %s\n", (char)i, codebook[i]);
            free(codebook[i]);
        }
    }

    free(codebook);
}

// 测试示例
int main() {
    char text[] = "AAAABBBCCDAA";
    huffmanEncode(text);

    return 0;
}

优缺点

  • 优点:Huffman编码能够显著减少高频字符的编码长度,实现高效压缩。
  • 缺点:构造Huffman树的过程相对复杂,对于频率较为均匀的字符,压缩效果有限。

LZW压缩

字典构建与压缩过程

LZW(Lempel-Ziv-Welch)是一种基于字典的无损压缩算法。它通过动态构建字典,将字符串中的重复模式编码为较短的二进制串,从而实现压缩。

步骤说明

  1. 初始化字典,包含所有可能的单字符模式。
  2. 从输入字符串中读取字符,寻找最长的已存在于字典中的模式。
  3. 将该模式的索引输出,并将新模式(即该模式加下一个字符)加入字典。
  4. 重复步骤2和3,直到字符串处理完毕。

示例说明

假设有字符串 "ABABABABABAB"

  • 初始字典包含所有单字符模式,如 'A': 1, 'B': 2
  • 读取字符 'A',最长匹配为 'A',输出其索引 1,并将 'AB' 加入字典。
  • 读取字符 'B',最长匹配为 'B',输出其索引 2,并将 'BA' 加入字典。
  • 继续匹配,最终压缩输出一系列索引代表原始字符串。

代码示例

python语言:

python 复制代码
def lzw_compress(uncompressed):
    dict_size = 256
    dictionary = {chr(i): i for i in range(dict_size)}
    w = ""
    compressed_data = []

    for c in uncompressed:
        wc = w + c
        if wc in dictionary:
            w = wc
        else:
            compressed_data.append(dictionary[w])
            dictionary[wc] = dict_size
            dict_size += 1
            w = c

    if w:
        compressed_data.append(dictionary[w])

    return compressed_data

# 示例使用
input_string = "ABABABABABAB"
compressed = lzw_compress(input_string)
print(compressed)  # 输出: [65, 66, 256, 258, 260, 262]

C语言:

objectivec 复制代码
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#define DICT_SIZE 256

typedef struct {
    char *key;
    int value;
} DictionaryEntry;

DictionaryEntry *createDictionaryEntry(char *key, int value) {
    DictionaryEntry *entry = (DictionaryEntry *)malloc(sizeof(DictionaryEntry));
    entry->key = strdup(key);
    entry->value = value;
    return entry;
}

void freeDictionaryEntry(DictionaryEntry *entry) {
    free(entry->key);
    free(entry);
}

int lzwCompress(char *uncompressed) {
    DictionaryEntry *dictionary[DICT_SIZE];
    for (int i = 0; i < DICT_SIZE; i++) {
        dictionary[i] = createDictionaryEntry((char *)&i, i);
    }

    char w[1000] = "";
    int compressedData[1000];
    int compressedDataIndex = 0;

    for (int i = 0; uncompressed[i]!= '\0'; i++) {
        char wc[1000];
        strcpy(wc, w);
        strncat(wc, &uncompressed[i], 1);

        int found = 0;
        for (int j = 0; j < DICT_SIZE; j++) {
            if (strcmp(dictionary[j]->key, wc) == 0) {
                found = 1;
                strcpy(w, wc);
                break;
            }
        }

        if (!found) {
            for (int j = 0; j < DICT_SIZE; j++) {
                if (strcmp(dictionary[j]->key, w) == 0) {
                    compressedData[compressedDataIndex++] = dictionary[j]->value;
                    break;
                }
            }

            dictionary[DICT_SIZE] = createDictionaryEntry(wc, DICT_SIZE);
            DICT_SIZE++;
            strcpy(w, &uncompressed[i]);
        }
    }

    if (strlen(w) > 0) {
        for (int j = 0; j < DICT_SIZE; j++) {
            if (strcmp(dictionary[j]->key, w) == 0) {
                compressedData[compressedDataIndex++] = dictionary[j]->value;
                break;
            }
        }
    }

    for (int i = 0; i < DICT_SIZE; i++) {
        freeDictionaryEntry(dictionary[i]);
    }

    for (int i = 0; i < compressedDataIndex; i++) {
        printf("%d ", compressedData[i]);
    }
    printf("\n");

    return compressedDataIndex;
}

int main() {
    char inputString[] = "ABABABABABAB";
    lzwCompress(inputString);

    return 0;
}

优缺点

  • 优点:LZW压缩在重复模式丰富的场景下能实现很好的压缩效果,且字典动态构建,使其适应性强。
  • 缺点:初始字典大小限制了压缩的灵活性,且当模式变化频繁时,压缩效果不佳。
相关推荐
old_power33 分钟前
【PCL】Segmentation 模块—— 基于图割算法的点云分割(Min-Cut Based Segmentation)
c++·算法·计算机视觉·3d
通信.萌新42 分钟前
OpenCV边沿检测(Python版)
人工智能·python·opencv
Bran_Liu1 小时前
【LeetCode 刷题】字符串-字符串匹配(KMP)
python·算法·leetcode
涛ing1 小时前
21. C语言 `typedef`:类型重命名
linux·c语言·开发语言·c++·vscode·算法·visual studio
weixin_307779131 小时前
分析一个深度学习项目并设计算法和用PyTorch实现的方法和步骤
人工智能·pytorch·python
Jcqsunny1 小时前
[分治] FBI树
算法·深度优先··分治
黄金小码农2 小时前
C语言二级 2025/1/20 周一
c语言·开发语言·算法
Channing Lewis2 小时前
flask实现重启后需要重新输入用户名而避免浏览器使用之前已经记录的用户名
后端·python·flask
Channing Lewis2 小时前
如何在 Flask 中实现用户认证?
后端·python·flask
水银嘻嘻2 小时前
【Mac】Python相关知识经验
开发语言·python·macos