解读FastAPI异步化为transformers模型打造高性能接口解析

bash 复制代码
from fastapi import FastAPI
from transformers import AutoModel, AutoTokenizer
import numpy as np
from starlette.responses import JSONResponse
 
 app = FastAPI()

加载模型和分词器

bash 复制代码
model = AutoModel.from_pretrained("distilbert-base-uncased")
  tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased")

异步函数用于将输入文本转换为模型需要的格式

bash 复制代码
  async def prepare_input_for_model(text: str):
       inputs = tokenizer.encode(text, return_tensors='pt')
           return inputs

异步函数用于模型预测

bash 复制代码
 async def get_prediction(inputs):
        outputs = model(inputs)
        return outputs.logits

异步接口用于处理HTTP请求并返回预测结果

bash 复制代码
   @app.post("/predict")
   async def predict(text: str):
             inputs = await prepare_input_for_model(text)
             outputs = await get_prediction(inputs)
             predictions = np.argmax(outputs.numpy(), axis=-1)
             return JSONResponse(content={"prediction": predictions[0]})

这段代码展示了如何使用FastAPI框架的异步功能来提高性能。通过异步函数prepare_input_for_model和get_prediction,我们能够处理并行任务,有效利用服务器资源。这样的设计模式对于需要处理大量并发请求的应用程序非常有用。

相关推荐
仙人掌_lz42 分钟前
微调ModernBERT为大型语言模型打造高效“过滤器”
人工智能·python·ai·语言模型·自然语言处理·bert
小众AI1 小时前
fastmcp: 更好用的 MCP Python 框架
开发语言·人工智能·python
cdut_suye1 小时前
【Linux系统】从零开始构建简易 Shell:从输入处理到命令执行的深度剖析
java·linux·服务器·数据结构·c++·人工智能·python
小屁孩大帅-杨一凡1 小时前
Azure Document Intelligence
后端·python·microsoft·flask·azure
政东.zd2 小时前
部署dify
python
萧鼎2 小时前
深入探索 Python 的 QuTiP 5 库:量子计算与开放量子系统模拟的利器
开发语言·python·量子计算
yousuotu2 小时前
python如何提取Chrome中的保存的网站登录用户名密码?
java·chrome·python
zx433 小时前
常见的降维算法
笔记·python·算法
我姓曹,谢谢3 小时前
python---kafka常规使用
开发语言·python·kafka
孤独野指针*P5 小时前
深度学习中的目标检测:从 PR 曲线到 AP
python·深度学习·yolo