解读FastAPI异步化为transformers模型打造高性能接口解析

bash 复制代码
from fastapi import FastAPI
from transformers import AutoModel, AutoTokenizer
import numpy as np
from starlette.responses import JSONResponse
 
 app = FastAPI()

加载模型和分词器

bash 复制代码
model = AutoModel.from_pretrained("distilbert-base-uncased")
  tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased")

异步函数用于将输入文本转换为模型需要的格式

bash 复制代码
  async def prepare_input_for_model(text: str):
       inputs = tokenizer.encode(text, return_tensors='pt')
           return inputs

异步函数用于模型预测

bash 复制代码
 async def get_prediction(inputs):
        outputs = model(inputs)
        return outputs.logits

异步接口用于处理HTTP请求并返回预测结果

bash 复制代码
   @app.post("/predict")
   async def predict(text: str):
             inputs = await prepare_input_for_model(text)
             outputs = await get_prediction(inputs)
             predictions = np.argmax(outputs.numpy(), axis=-1)
             return JSONResponse(content={"prediction": predictions[0]})

这段代码展示了如何使用FastAPI框架的异步功能来提高性能。通过异步函数prepare_input_for_model和get_prediction,我们能够处理并行任务,有效利用服务器资源。这样的设计模式对于需要处理大量并发请求的应用程序非常有用。

相关推荐
算法小白(真小白)1 小时前
低代码软件搭建自学第二天——构建拖拽功能
python·低代码·pyqt
唐小旭1 小时前
服务器建立-错误:pyenv环境建立后python版本不对
运维·服务器·python
007php0071 小时前
Go语言zero项目部署后启动失败问题分析与解决
java·服务器·网络·python·golang·php·ai编程
Chinese Red Guest2 小时前
python
开发语言·python·pygame
骑个小蜗牛2 小时前
Python 标准库:string——字符串操作
python
黄公子学安全4 小时前
Java的基础概念(一)
java·开发语言·python
程序员一诺5 小时前
【Python使用】嘿马python高级进阶全体系教程第10篇:静态Web服务器-返回固定页面数据,1. 开发自己的静态Web服务器【附代码文档】
后端·python
小木_.5 小时前
【Python 图片下载器】一款专门为爬虫制作的图片下载器,多线程下载,速度快,支持续传/图片缩放/图片压缩/图片转换
爬虫·python·学习·分享·批量下载·图片下载器
Jiude6 小时前
算法题题解记录——双变量问题的 “枚举右,维护左”
python·算法·面试