解读FastAPI异步化为transformers模型打造高性能接口解析

bash 复制代码
from fastapi import FastAPI
from transformers import AutoModel, AutoTokenizer
import numpy as np
from starlette.responses import JSONResponse
 
 app = FastAPI()

加载模型和分词器

bash 复制代码
model = AutoModel.from_pretrained("distilbert-base-uncased")
  tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased")

异步函数用于将输入文本转换为模型需要的格式

bash 复制代码
  async def prepare_input_for_model(text: str):
       inputs = tokenizer.encode(text, return_tensors='pt')
           return inputs

异步函数用于模型预测

bash 复制代码
 async def get_prediction(inputs):
        outputs = model(inputs)
        return outputs.logits

异步接口用于处理HTTP请求并返回预测结果

bash 复制代码
   @app.post("/predict")
   async def predict(text: str):
             inputs = await prepare_input_for_model(text)
             outputs = await get_prediction(inputs)
             predictions = np.argmax(outputs.numpy(), axis=-1)
             return JSONResponse(content={"prediction": predictions[0]})

这段代码展示了如何使用FastAPI框架的异步功能来提高性能。通过异步函数prepare_input_for_model和get_prediction,我们能够处理并行任务,有效利用服务器资源。这样的设计模式对于需要处理大量并发请求的应用程序非常有用。

相关推荐
Generalzy1 分钟前
深度觉醒 — Deep Agents(三座大山 — Agent 的核心挑战)
python
彼岸花开了吗11 分钟前
构建AI智能体:七十八、参数的艺术:如何在有限算力下实现高质量的AI诗歌创作
人工智能·python·llm
guoketg24 分钟前
Vision Transformer(ViT)的讲解和面试题目讲解
人工智能·python·深度学习·vit
小oo呆31 分钟前
【学习心得】Python的Pydantic(简介)
前端·javascript·python
岚天start32 分钟前
【日志监控方案】Python脚本获取关键字日志信息并推送钉钉告警
python·钉钉·日志监控
叫我:松哥34 分钟前
基于 Flask 框架开发的在线学习平台,集成人工智能技术,提供分类练习、随机练习、智能推荐等多种学习模式
人工智能·后端·python·学习·信息可视化·flask·推荐算法
rgeshfgreh34 分钟前
Python环境管理:uv极速对决Conda全能
python
幻云201035 分钟前
Python机器学习:从入门到精通
python
热爱专研AI的学妹43 分钟前
2026世界杯观赛工具自制指南:实时比分推送机器人搭建思路
开发语言·人工智能·python·业界资讯
热心不起来的市民小周1 小时前
测测你的牌:基于 MobileNetV2 的车牌内容检测
python·深度学习·计算机视觉