解读FastAPI异步化为transformers模型打造高性能接口解析

bash 复制代码
from fastapi import FastAPI
from transformers import AutoModel, AutoTokenizer
import numpy as np
from starlette.responses import JSONResponse
 
 app = FastAPI()

加载模型和分词器

bash 复制代码
model = AutoModel.from_pretrained("distilbert-base-uncased")
  tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased")

异步函数用于将输入文本转换为模型需要的格式

bash 复制代码
  async def prepare_input_for_model(text: str):
       inputs = tokenizer.encode(text, return_tensors='pt')
           return inputs

异步函数用于模型预测

bash 复制代码
 async def get_prediction(inputs):
        outputs = model(inputs)
        return outputs.logits

异步接口用于处理HTTP请求并返回预测结果

bash 复制代码
   @app.post("/predict")
   async def predict(text: str):
             inputs = await prepare_input_for_model(text)
             outputs = await get_prediction(inputs)
             predictions = np.argmax(outputs.numpy(), axis=-1)
             return JSONResponse(content={"prediction": predictions[0]})

这段代码展示了如何使用FastAPI框架的异步功能来提高性能。通过异步函数prepare_input_for_model和get_prediction,我们能够处理并行任务,有效利用服务器资源。这样的设计模式对于需要处理大量并发请求的应用程序非常有用。

相关推荐
周杰伦fans1 天前
pycharm之gitignore设置
开发语言·python·pycharm
weixin_462446231 天前
【原创实践】python 获取节假日列表 并保存为excel
数据库·python·excel
计算机毕设匠心工作室1 天前
【python大数据毕设实战】全球大学排名数据可视化分析系统、Hadoop、计算机毕业设计、包括数据爬取、数据分析、数据可视化、机器学习、实战教学
后端·python·mysql
别叫我->学废了->lol在线等1 天前
演示 hasattr 和 ** 解包操作符
开发语言·前端·python
free-elcmacom1 天前
机器学习入门<6>BP神经网络揭秘:从自行车摔跤到吃一堑长一智的AI智慧
人工智能·python·深度学习·神经网络·机器学习
Hi202402171 天前
如何录制浏览器播放的音频?虚拟音频线与Python采集步骤
python·音视频
programer_331 天前
本地手动创建一个MCP(windows环境)
windows·python·ai·mcp·cherry studio
电饭叔1 天前
不含Luhn算法《python语言程序设计》2018版--第8章14题利用字符串输入作为一个信用卡号之二(识别卡号有效)
java·python·算法
观音山保我别报错1 天前
列表,元组,字典
开发语言·python
小付爱coding1 天前
Claude Code安装教程【windows版本】
java·git·python