神经网络—卷积层

1.讲解 Conv2d

  • out_channels 参数为2时,会生成两个卷积核,分别与输入进行卷积。得到的两个输出为输出

新生成的卷积核和原来的卷积核不一定相同

  • in_channels (int) -- Number of channels in the input image

  • out_channels (int) -- Number of channels produced by the convolution

  • kernel_size (int or tuple) -- Size of the convolving kernel

  • stride (int or tuple, optional) -- Stride of the convolution. Default:1

  • padding (int, tuple or str, optional) -- Padding added to all four

    sides of the input. Default: 0

2.代码实现

python 复制代码
import torch
import torchvision
from torch import nn
from torch.nn import Conv2d
from torch.utils.data import DataLoader

dataset=torchvision.datasets.CIFAR10("../data",train=False,transform=torchvision.transforms.ToTensor(),download=True)
dataloader=DataLoader(dataset,batch_size=64)

class Tudui(nn.Module):
    def __init__(self):
        super(Tudui,self).__init__()
        self.conv1=Conv2d(in_channels=3,out_channels=6,kernel_size=3,stride=1,padding=0)

    def forward(self,x):
        self.conv1(x)
        return  x


tudui=Tudui()
print(tudui)
python 复制代码
for data in dataloader:
    imgs,targets=data
    output=tudui(imgs)
    print(output.shape)
python 复制代码
tudui=Tudui()

writer=SummaryWriter("./logs")
step=0

for data in dataloader:
    imgs,targets=data
    output=tudui(imgs)
    # print(output.shape)
    print(imgs.shape)
    print(output.shape)
    #torch.Size([64, 3, 32, 32])
    writer.add_images("input",imgs,step)
    #torch.Size([64, 6, 30, 30]) -> [xxx,3,30,30]

    output=torch.reshape(output,(-1,3,30,30))
    writer.add_images("output", output, step)

    step=step+1

注意:torch.Size([64, 3, 32, 32])与torch.Size([64, 6, 30, 30])

  • ①输出通道数从3增加到6,因为使用了6个卷积核。
  • ②宽度和高度的计算公式:
    (输入尺寸 - 卷积核大小 + 2 * 填充) / 步长 + 1
    将假设的值代入公式中:
    宽度:(32 - 3 + 2 * 0) / 1 + 1 = 30
    高度:(32 - 3 + 2 * 0) / 1 + 1 = 30

注意:reshape(output,(-1,3,30,30))

  • -1:这个值是一个占位符,表示新张量的第一个维度的大小应该自动计算,以保持元素总数不变。这意味着PyTorch会自动计算这个维度的大小,使得新的张量包含与原始张量相同数量的元素。
相关推荐
coberup5 分钟前
django Forbidden (403)错误解决方法
python·django·403错误
wangyue414 分钟前
c# 深度模型入门
深度学习
川石课堂软件测试28 分钟前
性能测试|docker容器下搭建JMeter+Grafana+Influxdb监控可视化平台
运维·javascript·深度学习·jmeter·docker·容器·grafana
985小水博一枚呀35 分钟前
【深度学习滑坡制图|论文解读3】基于融合CNN-Transformer网络和深度迁移学习的遥感影像滑坡制图方法
人工智能·深度学习·神经网络·cnn·transformer
龙哥说跨境36 分钟前
如何利用指纹浏览器爬虫绕过Cloudflare的防护?
服务器·网络·python·网络爬虫
985小水博一枚呀40 分钟前
【深度学习滑坡制图|论文解读2】基于融合CNN-Transformer网络和深度迁移学习的遥感影像滑坡制图方法
人工智能·深度学习·神经网络·cnn·transformer·迁移学习
数据与后端架构提升之路1 小时前
从神经元到神经网络:深度学习的进化之旅
人工智能·神经网络·学习
小白学大数据1 小时前
正则表达式在Kotlin中的应用:提取图片链接
开发语言·python·selenium·正则表达式·kotlin
flashman9111 小时前
python在word中插入图片
python·microsoft·自动化·word
菜鸟的人工智能之路1 小时前
桑基图在医学数据分析中的更复杂应用示例
python·数据分析·健康医疗