行为识别实战第二天——Yolov5+SlowFast+deepsort: Action Detection(PytorchVideo)

Yolov5+SlowFast+deepsort

一、简介

YoloV5+SlowFast+DeepSort 是一个结合了目标检测、动作识别和目标跟踪技术的视频处理框架。这一集成系统利用了各自领域中的先进技术,为视频监控、体育分析、人机交互等应用提供了一种强大的解决方案。

1. 组件说明:

  • YoloV5: Yolo(You Only Look Once)是一个流行的实时目标检测系统,其第五代版本YoloV5通过深度学习模型快速准确地识别和定位图像中的多个对象。它适用于实时场景,因为可以快速处理图像并给出高精度的结果。
  • SlowFast: 这是一个视频动作识别网络,由 Facebook AI 研究院开发。它通过同时使用两个处理流------一个慢速流捕捉空间特征,一个快速流捕捉时间动态------来识别视频中的动作。这种结构使得SlowFast在处理复杂动作时能够更好地理解视频内容。
  • DeepSort: DeepSort 是一个轻量级的跟踪算法,它在简单的Sort(Simple Online and Realtime Tracking)算法基础上增加了深度学习特征。这使得DeepSort在保持跟踪对象的同时,能够有效处理遮挡和交互场景。

2. 技术运用:

在 YoloV5+SlowFast+DeepSort 集成系统中:

  • YoloV5 负责实时检测视频帧中的对象,为后续的动作识别和目标跟踪提供必要的前处理。
  • SlowFast 接收YoloV5的输出,即识别出的对象,并对这些对象执行动作识别。通过分析对象随时间的动态变化,SlowFast能够判断对象正在进行的动作。
  • DeepSort 则在此基础上进行目标跟踪,通过连续帧中的动作和位置变化,持续跟踪各个对象,即使在复杂场景中也能维持较高的跟踪准确性。

3. 比单独使用SlowFast的优点:

  • 实时性和综合分析:相比于单独的SlowFast,集成系统通过YoloV5提供实时目标检测,可以在每一帧中都识别和标注出目标,而不仅仅是动作识别。这对于需要实时反应和处理的应用来说,提供了更大的灵活性和实用性。
  • 动作和目标的精确跟踪:通过DeepSort,系统不仅可以识别动作,还可以精确地跟踪动作的执行者,即使在目标快速移动或部分遮挡的情况下也能持续追踪。这对于需要长时间监控特定个体或对象的场景尤为重要。

4. 意义:

这种集成的技术方案极大地扩展了视频分析的应用范围,使其不仅限于简单的动作识别,还包括了复杂环境中的实时多目标检测与追踪。对于安全监控、体育比赛分析、交互式媒体等领域,YoloV5+SlowFast+DeepSort 提供了一个高效、精确的工具,能够满足这些领域对实时性、准确性和鲁棒性的高要求。

二、环境配置

环境配置见:行为识别实战第一天------Slowfast行为识别部署-CSDN博客

三、文件准备

下载下面文件备用:

文件分享

GitHub - Whiffe/yolov5-slowfast-deepsort-PytorchVideo

将 yolov5-master.zip放在yolov5-file,

将SLOWFAST_8x8_R50_DETECTION.pyth放在slowfast_file,

将yolov5l6.pt放在根目录yolov5-slowfast-deepsort-PytorchVideo-main。

sudo cp yolov5-file/yolov5-master.zip /home/ps/.cache/torch/hub/master.zip

sudo cp slowfast_file/SLOWFAST_8x8_R50_DETECTION.pyth /home/ps/.cache/torch/hub/checkpoints/SLOWFAST_8x8_R50_DETECTION.pyth

四、运行

1.mp4 放在根目录下,

python yolo_slowfast.py --input 1.mp4

最后结果视频保存在output.mp4.

配置好的完整代码分享,100%可以运行:

https://download.csdn.net/download/qq_34717531/89682626?spm=1001.2014.3001.5503

相关推荐
王哈哈^_^10 小时前
【数据集】【YOLO】【目标检测】交通事故识别数据集 8939 张,YOLO道路事故目标检测实战训练教程!
前端·人工智能·深度学习·yolo·目标检测·计算机视觉·pyqt
王哈哈^_^1 天前
【数据集】【YOLO】【VOC】目标检测数据集,查找数据集,yolo目标检测算法详细实战训练步骤!
人工智能·深度学习·算法·yolo·目标检测·计算机视觉·pyqt
深度学习lover1 天前
<项目代码>YOLOv8 苹果腐烂识别<目标检测>
人工智能·python·yolo·目标检测·计算机视觉·苹果腐烂识别
Eric.Lee20211 天前
yolo v5 开源项目
人工智能·yolo·目标检测·计算机视觉
极智视界2 天前
无人机场景数据集大全「包含数据标注+划分脚本+训练脚本」 (持续原地更新)
算法·yolo·目标检测·数据集标注·分割算法·算法训练·无人机场景数据集
深度学习lover2 天前
<项目代码>YOLOv8 夜间车辆识别<目标检测>
人工智能·yolo·目标检测·计算机视觉·表情识别·夜间车辆识别
小哥谈2 天前
源码解析篇 | YOLO11:计算机视觉领域的新突破 !对比YOLOv8如何 ?
人工智能·深度学习·神经网络·yolo·目标检测·机器学习·计算机视觉
挂科边缘3 天前
基于YOLOv8 Web的安全帽佩戴识别检测系统的研究和设计,数据集+训练结果+Web源码
前端·人工智能·python·yolo·目标检测·计算机视觉
小张贼嚣张3 天前
yolov8涨点系列之HiLo注意力机制引入
深度学习·yolo·机器学习
CV-King3 天前
yolov11-cpp-opencv-dnn推理onnx模型
人工智能·opencv·yolo·计算机视觉·dnn