高空抛物目标检测

高空抛物目标检测是一个技术领域,它关注于从高空向下抛掷或坠落的物体的自动识别和检测。这类目标检测在视频监控、安全防范以及事故预防中扮演着重要角色。

  1. 视频监控与分析:通过摄像头持续录制特定区域的视频,使用图像处理和机器学习技术分析视频数据,识别和跟踪坠落或抛掷物体。

  2. 物体检测算法:在FADE-Net中,研究人员利用深度学习技术开发了专门的算法,这些算法能够识别小型、快速移动的物体。算法通常包括运动信息的捕捉,以及在复杂背景中准确区分物体。

  3. 数据集使用:FADE数据集包含多样化的视频场景,这有助于训练模型以适应不同的环境、天气条件和物体类型。数据集的多样性是提高检测算法泛化能力的关键。

技术意义

  • 安全增强:自动检测高空坠落物体可以及时警告行人或相关人员,显著减少事故和伤害。
  • 资源优化:自动化检测减少了人力监控的需要,提高了监控效率和反应速度。
  • 预防和应对:通过及时检测和响应坠落事件,可以更有效地部署紧急服务,如警察、消防等。

通过利用FADE-Net这类先进的检测技术,可以大幅提升建筑区域安全管理的效率和效果,防止潜在的高空抛物事故对人的伤害。这类技术的发展对于都市化高密度居住区特别关键,有助于建立更安全的居住和工作环境。

论文作者:Zhigang Tu,Zitao Gao,Zhengbo Zhang,Chunluan Zhou,Junsong Yuan,Bo Du

作者单位:Wuhan University;Ant Group co Ltd;The State University of New York at Buffalo

论文链接:http://arxiv.org/abs/2408.05750v1

项目链接:https://fadedataset.github.io/FADE.github.io/

内容简介:

1)方向:视频目标检测

2)应用:建筑周围的坠落物体检测

3)背景:建筑物坠落物体对行人构成了严重威胁,虽然有些建筑物周围安装了监控摄像头,但由于坠落物体体积小、运动速度快,以及背景复杂,人类很难在监控视频中捕捉到此类事件。因此,需要开发自动检测坠落物体的方法。

4)方法:本文首次提出了一个名为FADE的大型多样化视频数据集,该数据集专门用于建筑物周围的坠落物体检测。FADE包含来自18个场景的1881个视频,涵盖了8种坠落物体类别、4种天气条件和4种视频分辨率。此外,研究人员开发了一种新的物体检测方法,称为FADE-Net,该方法有效利用运动信息,并生成高质量的小尺寸提案,用于检测建筑物周围的坠落物体。

5)结果:实验结果表明,FADE-Net在FADE数据集上的表现显著优于先前用于通用物体检测、视频物体检测和移动物体检测的方法,提供了一个有效的基准,推动未来研究。数据集和代码:https://fadedataset.github.io/FADE.github.io/

相关推荐
Faker66363aaa11 小时前
城市地标建筑与车辆检测 - 基于YOLOv10n的高效目标检测模型训练与应用
人工智能·yolo·目标检测
Piar1231sdafa15 小时前
深度学习目标检测算法之YOLOv26加拿大鹅检测
深度学习·算法·目标检测
向哆哆1 天前
恶性疟原虫显微镜图像的目标检测数据集分享(适用于目标检测任务)
人工智能·目标检测·计算机视觉
向哆哆1 天前
道路表面多类型缺陷的图像识别数据集分享(适用于目标检测任务)
人工智能·目标检测·计算机视觉
jay神2 天前
基于 YOLOv11 的人脸表情识别系统
人工智能·深度学习·yolo·目标检测·计算机视觉
向哆哆2 天前
高压电线电力巡检六类目标的图像识别数据集分享(适用于目标检测任务)
人工智能·目标检测·计算机视觉
向哆哆2 天前
七种常见虫子的图像识别数据集分享(适用于目标检测任务)
人工智能·目标检测·计算机视觉
AI浩2 天前
面向对象保真度的遥感图像生成扩散模型
人工智能·目标检测
Lun3866buzha3 天前
多类别目标检测实战——使用yolov10n-PST模型实现猫、狗、人类和兔子的识别与定位
人工智能·yolo·目标检测
AI浩3 天前
VISION KAN:基于Kan的无注意力视觉骨干网络
人工智能·目标检测