本地启动Flower来监控Dify的Celery任务队列

本地启动Flower来监控Dify的Celery任务队列

说明:

启动Middleware服务

bash 复制代码
git clone https://github.com/langgenius/dify.git
cd dify
cd docker
cp middleware.env.example middleware.env
docker compose -f docker-compose.middleware.yaml --profile weaviate -p dify up -d

准备SECRET_KEY:

bash 复制代码
cd ../api
cp .env.example .env
# Generate a `SECRET_KEY` in the `.env` file.
sed -i "/^SECRET_KEY=/c\SECRET_KEY=$(openssl rand -base64 42)" .env

创建Python环境并安装依赖:

bash 复制代码
python3 -m venv venv
source venv/bin/activate
pip install poetry
poetry run which python
poetry shell
poetry install
poetry add flower

运行迁移命令使得数据库保持最新:

bash 复制代码
poetry run python -m flask db upgrade

注释掉api/app.py中的monkey.patch_all(),注释后头部代码如下:

python 复制代码
import os

if os.environ.get("DEBUG", "false").lower() != "true":
    from gevent import monkey

    # monkey.patch_all()

    import grpc.experimental.gevent

    grpc.experimental.gevent.init_gevent()

如果不关闭monkey patching,flower的页面将无法正常刷新出来,见我在flower库上提出的issue: https://github.com/mher/flower/issues/1390

启动Flask API服务:

bash 复制代码
poetry run python -m flask run --host 0.0.0.0 --port=5001 --debug

启动Web服务:

bash 复制代码
cd ../web
npm install
npm run dev

启动Celery任务队列:

bash 复制代码
# source venv/bin/activate
poetry run python -m celery -A app.celery worker -P gevent -c 1 --loglevel INFO -Q dataset,generation,mail,ops_trace,app_deletion

启动Flower:

bash 复制代码
# source venv/bin/activate
poetry run python -m celery -A app.celery flower --port=5555 --address='0.0.0.0' --debug --enable_events
相关推荐
健忘的派大星6 小时前
【AI大模型】根据官方案例使用milvus向量数据库打造问答RAG系统
人工智能·ai·语言模型·llm·milvus·agi·rag
ZHOU_WUYI1 天前
lightrag源码 : Generate chunks from document
人工智能·rag
哥不是小萝莉4 天前
提升大语言模型的三大策略
rag
weixin_418654696 天前
Centos 宝塔安装
linux·运维·centos·dify
伊织code7 天前
[报错] Dify - 踩坑笔记
flask·api·报错·踩坑·dify·poetry·opendal
阿里云大数据AI技术7 天前
面向法律场景的大模型RAG检索增强解决方案
人工智能·阿里云·llm·rag·pai
有小肚子的三眼桥墩8 天前
Ubuntu 部署Docker + Dify,遇到的坑, 最新亲测镜像
ubuntu·docker·dify
AI明说9 天前
CancerGPT :基于大语言模型的罕见癌症药物对协同作用少样本预测研究
人工智能·语言模型·自然语言处理·大模型·rag
GZM88888811 天前
RAG 技术困境:为何单纯依赖向量嵌入不可靠?
rag
大模型之路11 天前
Table-Augmented Generation(TAG):Text2SQL与RAG的升级与超越
llm·tag·text2sql·rag·检索增强生成