Python3.11二进制AI项目程序打包为苹果Mac App(DMG)-应用程序pyinstaller制作流程(AppleSilicon)

众所周知,苹果MacOs系统虽然贵为Unix内核系统,但由于系统不支持N卡,所以如果想在本地跑AI项目,还需要对相关的AI模块进行定制化操作,本次我们演示一下如何将基于Python3.11的AI项目程序打包为MacOS可以直接运行的DMG安装包,可以苹果系统中一键运行AI项目。

MacOs本地部署AI项目

首先确保本地已经安装好 arm 内核的Python3.11程序,可以在Python官网进行下载和安装:python.org

这里以快手团队著名的表情迁移项目 LivePortrait 为例子,首先克隆快手团队官方的项目:

复制代码
git clone https://github.com/KwaiVGI/LivePortrait.git

进入项目的目录:

复制代码
cd LivePortrait

安装基于Mac系统的相关依赖:

复制代码
# for macOS with Apple Silicon users  
pip install -r requirements_macOS.txt

随后修改app.py文件,在代码上方加入环境变量的设置:

复制代码
# coding: utf-8  
  
"""  
The entrance of the gradio for human  
"""  
  
import os  
os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = "1"

PYTORCH_ENABLE_MPS_FALLBACK=1 这个环境变量用于 PyTorch 中的 MPS(Metal Performance Shaders)加速功能。

MPS 是苹果公司为 macOS 和 iOS 设备提供的图形处理单元 (GPU) 框架,可以加速机器学习模型的训练和推理。

PYTORCH_ENABLE_MPS_FALLBACK=1 表示启用 MPS 回退功能。当 PyTorch 检测到设备支持 MPS 时,它会优先使用 MPS 进行加速。如果 MPS 无法使用,它会回退到 CPU 上运行。

简而言之,设置这个环境变量可以帮助 PyTorch 在支持 MPS 的设备上利用 GPU 加速,并在不支持 MPS 的设备上正常运行。

如果不单独设置这个变量,启用推理的时候会报错。

随后,启动推理页面进行测试:

复制代码
python3 app.py

注意,由于xpose暂不支持mps推理,所以mac版本不支持动物表情驱动,只支持人物的表情驱动。

如果推理没有问题,那么可以开始进行打包操作了。

MacOs本地打包AI项目

首先,安装pyinstaller库:

复制代码
pip3 install -U pyinstaller

随后,创建 app.spec 项目配置文件:

复制代码
# -*- mode: python ; coding: utf-8 -*-  
import sys  
sys.setrecursionlimit(5000)  
from PyInstaller.utils.hooks import collect_data_files  
  
datas = []  
datas += collect_data_files('gradio_client')  
datas += collect_data_files('gradio')  
  
  
  
a = Analysis(  
    ['app.py',  
      
      
    ],  
    pathex=['/Users/liuyue/Downloads/LivePortrait_For_Mac'],  
    binaries=[],  
    datas=datas,  
    hiddenimports=[],  
    hookspath=[],  
    hooksconfig={},  
    runtime_hooks=[],  
    excludes=[],  
    noarchive=False,  
    optimize=0,  
    module_collection_mode={ 'gradio': 'py'}  
)  
pyz = PYZ(a.pure)  
  
exe = EXE(  
    pyz,  
    a.scripts,  
    [],  
    exclude_binaries=True,  
    name='LivePortrait',  
    icon='AnyConv.com__paints_logo.icns',  
    debug=False,  
    bootloader_ignore_signals=False,  
    strip=False,  
    upx=True,  
    console=True,  
    disable_windowed_traceback=False,  
    argv_emulation=False,  
    target_arch=None,  
    codesign_identity=None,  
    entitlements_file=None,  
)  
  
a.datas += Tree('./pretrained_weights', prefix='pretrained_weights')  
  
  
  
coll = COLLECT(  
    exe,  
    a.binaries,  
    a.datas,  
    strip=False,  
    upx=True,  
    upx_exclude=[],  
    name='LivePortrait',  
)

这里按照 pyinstaller 官方文档对项目的入口文件,依赖文件,三方目录等进行声明。

接着运行打包命令:

复制代码
pyinstaller webui.spec

程序返回:

复制代码
98124 INFO: Rewriting the executable's macOS SDK version (13.1.0) to match the SDK version of the Python library (12.1.0) in order to avoid inconsistent behavior and potential UI issues in the frozen application.  
98125 INFO: Re-signing the EXE  
98243 INFO: Building EXE from EXE-00.toc completed successfully.  
98244 INFO: checking Tree  
98244 INFO: Building Tree because Tree-00.toc is non existent  
98244 INFO: Building Tree Tree-00.toc  
98265 INFO: checking COLLECT  
98266 INFO: Building COLLECT because COLLECT-00.toc is non existent  
98266 INFO: Building COLLECT COLLECT-00.toc  
108930 INFO: Building COLLECT COLLECT-00.toc completed successfully.

代表打包成功,在项目的 dist 目录下会生成可执行程序:

双击 LivePortrait 图标进行测试即可。

至此,程序就打包好了。

MacOs本地构建DMG安装包

随后,运行磁盘工具,新建一个磁盘文件:

注意格式必须是 mac os 扩展(日志式),体积需要大于2G

接着把刚才打包好的项目文件拷贝到新建的磁盘中即可。

随后推出磁盘,点击映像-》转换,对磁盘文件进行压缩。

最后我们得到一个压缩好的DMG安装文件:

复制代码
➜  mac ll  
total 5328720  
-rw-r--r--@ 1 liuyue  staff   2.5G  8 20 19:49 LivePortrait(已转换).dmg

在别的Mac电脑中双击安装包打开运行即可。

至此我们就走完了整个MacOS的AI项目程序制作流程,最后,奉上打包好的程序文件,与众乡亲同飨:

复制代码
新版LivePortrait整合包(苹果MacOsAppleSilicon)图片引擎 https://pan.quark.cn/s/53c24cd845b9
相关推荐
前端不太难11 分钟前
RN 图像处理(裁剪、压缩、滤镜)性能很差怎么办?
图像处理·人工智能
极客BIM工作室12 分钟前
阿里WAN大模型:通义万相视频生成系统
人工智能
min18112345613 分钟前
电商 AI 设计革命:2 小时生成商品主图,点击率提升 35% 的实践
人工智能
AI360labs_atyun15 分钟前
呼吸疾病+AI,人工智能正在改变慢病治疗
人工智能·科技·学习·ai
五度易链-区域产业数字化管理平台19 分钟前
十五五规划明确数智方向数字经济将迎新变化,五度易链大数据、AI技术如何从单点应用走向全域赋能
大数据·人工智能
zhongerzixunshi20 分钟前
高新技术企业认定成功后,企业能享受哪些政策优惠
大数据·人工智能
拉姆哥的小屋21 分钟前
基于Benders分解的大规模两阶段随机优化算法实战:从理论到工程实践的完整解决方案
人工智能·算法·机器学习
爱笑的眼睛1128 分钟前
PyTorch自动微分:超越基础,深入动态计算图与工程实践
java·人工智能·python·ai
LiYingL32 分钟前
PictSure:通过视觉嵌入功能挑战 _Few-Shot _分类的新方法
人工智能·分类·数据挖掘