【Datawhale X 李宏毅苹果书 AI夏令营】《深度学习详解》Task2 打卡

文章目录


前言

本文是【Datawhale X 李宏毅苹果书 AI夏令营】的Task2学习笔记打卡。


学习目标

李宏毅老师对应视频课程:https://www.bilibili.com/video/BV1JA411c7VT?p=3

《深度学习详解》第一章主要介绍了深度学习中的基础数学知识。

一、线性模型

经过了前面的梯度下降优化过程以后,我们得到了通过训练数据估计出来的一个数学模型,其中y(预测某天的视频观看次数)和 x 1 x_1 x1(前一天的观看次数有关)。

但是视频观看次数有个周期性的规律,即一周有七天,在周末的时候,人们会去休息放松,所以学习视频的观看次数就会下降(暂时不考虑法定节假日和调休)。

这些模型都是把输入的特征 x 乘上一个权重,再加上一个偏置就得到预测的结果,这样的模型称为线性模型(linear model)。接下来会看如何把线性模型做得更好。

二、分段线性曲线

对于分段线性曲线,线性模型有很大的限制,这一种来自于模型的限制称为模型的偏差,无法模拟真实的情况。

分段曲线可以逼近任何连续曲线

直接写 HardSigmoid 不是很容易,但是可以用一条曲线来理解它,用 Sigmoid 函数来逼近 Hard Sigmoid,如图 1.10 所示。Sigmoid 函数的表达式为
y = c 1 1 + e − ( b + w x 1 ) y = c\frac{1}{1+e^{− (b+wx_1)}} y=c1+e−(b+wx1)1

调整参数,可以绘制出不同的 Sigmoid 函数

在机器学习里面,Sigmoid 或 ReLU 称为激活函数(activation function)。

Q: 优化是找一个可以让损失最小的参数,是否可以穷举所有可能的未知参数的值?

A:只有 w 跟 b 两个参数的前提之下,可以穷举所有可能的 w 跟 b

的值,所以在参数很少的情况下。甚至可能不用梯度下降,不需要优化的技巧。但是参数非常多的时候,就不能使用穷举的方法,需要梯度下降来找出可以让损失最低的参数。

经过上面的多个sigmoid函数的计算,可以得到比较有灵活性的损失函数。

如下图所示,未知参数可以组合成一个向量。

在训练数据和测试数据上的结果是不一致的,这种情况称为过拟合(overfitting)。


总结

每一排称为一层,称为隐藏层(hiddenlayer),很多的隐藏层就"深",这套技术称为深度学习。

相关推荐
灵途科技2 分钟前
灵途科技当选中国电子商会智能传感器专委会副理事长单位
大数据·人工智能·科技
非著名架构师3 分钟前
“低空经济”的隐形护航者:AI驱动的秒级风场探测如何保障无人机物流与城市空管安全?
人工智能·数据分析·疾风气象大模型·高精度天气预报数据·galeweather.cn·高精度气象
洁洁!18 分钟前
openEuler在WSL2中的GPU加速AI训练实战指南
人工智能·数据挖掘·数据分析
桂花饼20 分钟前
字节Seedream-4.5架构揭秘:当AI开始拥有“版式推理”能力,CISAN与DLE引擎如何重构多图生成?
人工智能·aigc·idea·sora2 api·gemini 3 pro·claude opus 4.5·doubao-seedream
哥布林学者24 分钟前
吴恩达深度学习课程四:计算机视觉 第一周:卷积基础知识 课后习题和代码代码实践
深度学习·ai
whaosoft-14328 分钟前
51c视觉~合集55
人工智能
AI营销快线31 分钟前
2025年AI营销内容生产革命:成本减半,效率倍增的关键
人工智能
正在走向自律35 分钟前
AiOnly平台x FastGPT:一键调用Gemini 3 Pro系列模型从零构建AI工作流
大数据·数据库·人工智能·aionly·nano banana pro·gemini 3 pro
沃斯堡&蓝鸟41 分钟前
DAY22 推断聚类后簇的类型
人工智能·机器学习·聚类
老蒋新思维41 分钟前
创客匠人 2025 万人峰会实录:AI 智能体重构创始人 IP 变现逻辑 —— 从 0 到年入千万的实战路径
大数据·网络·人工智能·tcp/ip·创始人ip·创客匠人·知识变现