Life long learning

现象:一个model进行multi-task learning做的还可以,说明模型是可以同时学会多个任务的,但是如果训练过程是1个task 1个task的顺序进行,模型就会发生灾难性的遗忘现象,只会做刚学完的task。

目标:让模型不要那么快忘掉过去学到的东西

upper bound:multi-task learning,能不忘并达到multi-task learning水平就是很厉害了。

方法一:Selective Synaptic Plasticity

在下一个task训练的时候要让模型尽可能少的调整对上一个task重要的parameter

参数bi衡量参数对上一个任务的重要性,可以通过调整一下θbi看看上一个task的loss变化大还是小来确定(bi是超参数,人为预先设定,task2 train的时候是不变的)

方法二:Gradient Episodic Memory (GEM)

保存上一个task的少量训练资料,以在新的task每次调整梯度的时候都可以回头算一下上一个task此时的梯度,然后将新旧梯度结合(新梯度为主,这种方法有点像作弊,直接就在进行multi-task learning了,但是区别是它只用上一个task一点点资料来计算个梯度)

相关推荐
祝余Eleanor5 分钟前
Day 30 函数专题2 装饰器
人工智能·python·机器学习·数据分析
龙腾AI白云11 分钟前
【卷积神经网络(CNN)详细介绍及其原理详解 】
深度学习·神经网络
张较瘦_14 分钟前
[论文阅读] AI + 软件工程 | GenAI 赋能自适应系统:从技术突破到研究蓝图,一文看懂核心价值与挑战
论文阅读·人工智能·软件工程
START_GAME17 分钟前
ComfyUI完全指南:从零正确配置GPU运算,彻底解决CPU运行与使用率低问题
人工智能
钛投标免费AI标书工具19 分钟前
银奖·钛投标荣获华为技术有限公司主办昇腾AI大赛华中区决赛银奖
人工智能·深度学习·自然语言处理·知识图谱
nwsuaf_huasir30 分钟前
深度学习1.3-软件篇-2025Pycharm添加导入anaconda中虚拟环境的python解释器以及相关Error解决方案
人工智能·python·深度学习
2301_8002561133 分钟前
8.3 查询优化 核心知识点总结
大数据·数据库·人工智能·sql·postgresql
互联网资讯38 分钟前
融合AI大模型的Geo优化系统服务商如何选?避坑指南
大数据·人工智能·ai搜索优化·geo系统·geo优化系统·geo系统搭建
wan55cn@126.com39 分钟前
人生如戏:换个片场,继续出演
人工智能·笔记·百度·微信
搞科研的小刘选手40 分钟前
【广东财经大学主办】2026年人工智能与金融科技国际学术会议(IC-AIF 2026)
大数据·人工智能·金融·学术会议