Life long learning

现象:一个model进行multi-task learning做的还可以,说明模型是可以同时学会多个任务的,但是如果训练过程是1个task 1个task的顺序进行,模型就会发生灾难性的遗忘现象,只会做刚学完的task。

目标:让模型不要那么快忘掉过去学到的东西

upper bound:multi-task learning,能不忘并达到multi-task learning水平就是很厉害了。

方法一:Selective Synaptic Plasticity

在下一个task训练的时候要让模型尽可能少的调整对上一个task重要的parameter

参数bi衡量参数对上一个任务的重要性,可以通过调整一下θbi看看上一个task的loss变化大还是小来确定(bi是超参数,人为预先设定,task2 train的时候是不变的)

方法二:Gradient Episodic Memory (GEM)

保存上一个task的少量训练资料,以在新的task每次调整梯度的时候都可以回头算一下上一个task此时的梯度,然后将新旧梯度结合(新梯度为主,这种方法有点像作弊,直接就在进行multi-task learning了,但是区别是它只用上一个task一点点资料来计算个梯度)

相关推荐
ZCXZ12385296a4 分钟前
【计算机视觉】基于YOLO13-C3k2-ConvAttn的电动汽车充电桩车位线自动检测与定位系统
人工智能·计算机视觉
qwerasda1238528 分钟前
游戏场景中的敌方目标检测与定位实战使用mask-rcnn_regnetx模型实现
人工智能·目标检测·游戏
硅基流动10 分钟前
从云原生到 AI 的跃迁探索之路|开发者说
大数据·人工智能·云原生
jackywine615 分钟前
零样本学习(Zero-Shot Learning)和少样本学习(Few-Shot Learning)有何区别?AI 是怎么“猜“出来的
人工智能·机器学习
犀思云18 分钟前
构建全球化多云网格:FusionWAN NaaS 在高可用基础设施中的工程实践
运维·网络·人工智能·系统架构·机器人
jinyeyiqi202622 分钟前
气象监测设备如何助力精细化环境管理?金叶仪器智能气象站方案探讨
人工智能·机器学习·自动驾驶
weixin_4166600726 分钟前
AI 导出 Word 不正规?10 类文档样式模板(可直接套用,含字体/字号/行距/缩进)
人工智能·word·论文·排版·数学公式
小鸡吃米…31 分钟前
机器学习 - 感知机(Perceptron)
人工智能·python·机器学习
小鸡吃米…35 分钟前
机器学习 - 轮次(Epoch)
人工智能·深度学习·机器学习
风栖柳白杨1 小时前
【语音识别】Qwen3-ASR原理及部署
人工智能·python·语音识别·xcode·audiolm