Life long learning

现象:一个model进行multi-task learning做的还可以,说明模型是可以同时学会多个任务的,但是如果训练过程是1个task 1个task的顺序进行,模型就会发生灾难性的遗忘现象,只会做刚学完的task。

目标:让模型不要那么快忘掉过去学到的东西

upper bound:multi-task learning,能不忘并达到multi-task learning水平就是很厉害了。

方法一:Selective Synaptic Plasticity

在下一个task训练的时候要让模型尽可能少的调整对上一个task重要的parameter

参数bi衡量参数对上一个任务的重要性,可以通过调整一下θbi看看上一个task的loss变化大还是小来确定(bi是超参数,人为预先设定,task2 train的时候是不变的)

方法二:Gradient Episodic Memory (GEM)

保存上一个task的少量训练资料,以在新的task每次调整梯度的时候都可以回头算一下上一个task此时的梯度,然后将新旧梯度结合(新梯度为主,这种方法有点像作弊,直接就在进行multi-task learning了,但是区别是它只用上一个task一点点资料来计算个梯度)

相关推荐
北辰alk44 分钟前
RAG索引流程详解:如何高效解析文档构建知识库
人工智能
九河云1 小时前
海上风电“AI偏航对风”:把发电量提升2.1%,单台年增30万度
大数据·人工智能·数字化转型
wm10431 小时前
机器学习第二讲 KNN算法
人工智能·算法·机器学习
沈询-阿里1 小时前
Skills vs MCP:竞合关系还是互补?深入解析Function Calling、MCP和Skills的本质差异
人工智能·ai·agent·ai编程
xiaobai1781 小时前
测试工程师入门AI技术 - 前序:跨越焦虑,从优势出发开启学习之旅
人工智能·学习
盛世宏博北京1 小时前
云边协同・跨系统联动:智慧档案馆建设与功能落地
大数据·人工智能
TGITCIC2 小时前
讲透知识图谱Neo4j在构建Agent时到底怎么用(二)
人工智能·知识图谱·neo4j·ai agent·ai智能体·大模型落地·graphrag
逆羽飘扬2 小时前
DeepSeek-mHC深度拆解:流形约束如何驯服狂暴的超连接?
人工智能
bing.shao2 小时前
AI工作流如何开始
人工智能
小途软件2 小时前
用于机器人电池电量预测的Sarsa强化学习混合集成方法
java·人工智能·pytorch·python·深度学习·语言模型