Life long learning

现象:一个model进行multi-task learning做的还可以,说明模型是可以同时学会多个任务的,但是如果训练过程是1个task 1个task的顺序进行,模型就会发生灾难性的遗忘现象,只会做刚学完的task。

目标:让模型不要那么快忘掉过去学到的东西

upper bound:multi-task learning,能不忘并达到multi-task learning水平就是很厉害了。

方法一:Selective Synaptic Plasticity

在下一个task训练的时候要让模型尽可能少的调整对上一个task重要的parameter

参数bi衡量参数对上一个任务的重要性,可以通过调整一下θbi看看上一个task的loss变化大还是小来确定(bi是超参数,人为预先设定,task2 train的时候是不变的)

方法二:Gradient Episodic Memory (GEM)

保存上一个task的少量训练资料,以在新的task每次调整梯度的时候都可以回头算一下上一个task此时的梯度,然后将新旧梯度结合(新梯度为主,这种方法有点像作弊,直接就在进行multi-task learning了,但是区别是它只用上一个task一点点资料来计算个梯度)

相关推荐
产品设计大观14 分钟前
6个宠物APP原型设计案例拆解:含AI问诊、商城、领养、托运
大数据·人工智能·ai·宠物·墨刀·app原型·宠物app
Codebee17 分钟前
Ooder全栈框架:AI理解业务的多字段表单智能布局技术实现
人工智能
weilaikeqi111117 分钟前
汪喵灵灵荣获“兴智杯”全国AI创新应用大赛一等奖,彰显AI宠物医疗硬实力
人工智能·百度·宠物
aliprice18 分钟前
Target电商平台研究指南:十款实用工具助力全渠道零售与品牌营销分析
人工智能·零售
yiersansiwu123d18 分钟前
多模态突破:AI规模化应用的关键密码
人工智能
renhongxia122 分钟前
面向图像处理逆问题的扩散模型研究综述
图像处理·人工智能
古城小栈32 分钟前
代理人工智能(Agent AI):NVIDIA Project GR00T 实战
人工智能
Coder_Boy_32 分钟前
Java+Proteus仿真Arduino控制LED问题排查全记录(含交互过程)
java·人工智能·python
小程故事多_8034 分钟前
RAG终将被取代?长上下文、Agent记忆与Text2SQL的技术博弈
人工智能·aigc
厚德云1 小时前
全球首款填空式AI绘画提示词工具PromptFill正式发布
人工智能·ai作画·云计算·aigc·ai绘画