Life long learning

现象:一个model进行multi-task learning做的还可以,说明模型是可以同时学会多个任务的,但是如果训练过程是1个task 1个task的顺序进行,模型就会发生灾难性的遗忘现象,只会做刚学完的task。

目标:让模型不要那么快忘掉过去学到的东西

upper bound:multi-task learning,能不忘并达到multi-task learning水平就是很厉害了。

方法一:Selective Synaptic Plasticity

在下一个task训练的时候要让模型尽可能少的调整对上一个task重要的parameter

参数bi衡量参数对上一个任务的重要性,可以通过调整一下θbi看看上一个task的loss变化大还是小来确定(bi是超参数,人为预先设定,task2 train的时候是不变的)

方法二:Gradient Episodic Memory (GEM)

保存上一个task的少量训练资料,以在新的task每次调整梯度的时候都可以回头算一下上一个task此时的梯度,然后将新旧梯度结合(新梯度为主,这种方法有点像作弊,直接就在进行multi-task learning了,但是区别是它只用上一个task一点点资料来计算个梯度)

相关推荐
打羽毛球吗️4 分钟前
机器学习中的两种主要思路:数据驱动与模型驱动
人工智能·机器学习
好喜欢吃红柚子21 分钟前
万字长文解读空间、通道注意力机制机制和超详细代码逐行分析(SE,CBAM,SGE,CA,ECA,TA)
人工智能·pytorch·python·计算机视觉·cnn
小馒头学python26 分钟前
机器学习是什么?AIGC又是什么?机器学习与AIGC未来科技的双引擎
人工智能·python·机器学习
神奇夜光杯35 分钟前
Python酷库之旅-第三方库Pandas(202)
开发语言·人工智能·python·excel·pandas·标准库及第三方库·学习与成长
正义的彬彬侠38 分钟前
《XGBoost算法的原理推导》12-14决策树复杂度的正则化项 公式解析
人工智能·决策树·机器学习·集成学习·boosting·xgboost
Debroon1 小时前
RuleAlign 规则对齐框架:将医生的诊断规则形式化并注入模型,无需额外人工标注的自动对齐方法
人工智能
羊小猪~~1 小时前
神经网络基础--什么是正向传播??什么是方向传播??
人工智能·pytorch·python·深度学习·神经网络·算法·机器学习
AI小杨1 小时前
【车道线检测】一、传统车道线检测:基于霍夫变换的车道线检测史诗级详细教程
人工智能·opencv·计算机视觉·霍夫变换·车道线检测
晨曦_子画1 小时前
编程语言之战:AI 之后的 Kotlin 与 Java
android·java·开发语言·人工智能·kotlin
道可云1 小时前
道可云人工智能&元宇宙每日资讯|2024国际虚拟现实创新大会将在青岛举办
大数据·人工智能·3d·机器人·ar·vr