Life long learning

现象:一个model进行multi-task learning做的还可以,说明模型是可以同时学会多个任务的,但是如果训练过程是1个task 1个task的顺序进行,模型就会发生灾难性的遗忘现象,只会做刚学完的task。

目标:让模型不要那么快忘掉过去学到的东西

upper bound:multi-task learning,能不忘并达到multi-task learning水平就是很厉害了。

方法一:Selective Synaptic Plasticity

在下一个task训练的时候要让模型尽可能少的调整对上一个task重要的parameter

参数bi衡量参数对上一个任务的重要性,可以通过调整一下θbi看看上一个task的loss变化大还是小来确定(bi是超参数,人为预先设定,task2 train的时候是不变的)

方法二:Gradient Episodic Memory (GEM)

保存上一个task的少量训练资料,以在新的task每次调整梯度的时候都可以回头算一下上一个task此时的梯度,然后将新旧梯度结合(新梯度为主,这种方法有点像作弊,直接就在进行multi-task learning了,但是区别是它只用上一个task一点点资料来计算个梯度)

相关推荐
Mxsoft6191 分钟前
我发现区块链数据同步延迟,某次故障溯源卡顿,动态调整共识机制救场!
人工智能
m0_488913013 分钟前
小白也能懂!RAG技术让AI告别知识滞后,收藏学习
人工智能·学习·langchain·大模型·ai大模型·rag·大模型学习
帮帮志9 分钟前
【AI大模型对话】流式输出和非流式输出的定义和区别
开发语言·人工智能·python·大模型·anaconda
陈奕昆10 分钟前
n8n实战营Day1课时2:核心概念拆解+天气提醒工作流实操
开发语言·人工智能·n8n
邹小邹-AI17 分钟前
未来是AI客服的天下
人工智能
冴羽40 分钟前
Nano Banana Pro 很强,但你要学会写提示词才能为所欲为
人工智能·aigc·mcp
ATMQuant1 小时前
量化指标解码11:挤压动量 - 捕捉低波动后的爆发行情
人工智能·ai·量化交易·vnpy
Aurora-silas1 小时前
Mac 本地运行 Hugging Face 大模型完全指南:PyTorch (MPS) vs Apple MLX
人工智能·pytorch·macos
机器不学习我也不学习1 小时前
人工智能综合项目开发14----技术文档撰写
人工智能