Life long learning

现象:一个model进行multi-task learning做的还可以,说明模型是可以同时学会多个任务的,但是如果训练过程是1个task 1个task的顺序进行,模型就会发生灾难性的遗忘现象,只会做刚学完的task。

目标:让模型不要那么快忘掉过去学到的东西

upper bound:multi-task learning,能不忘并达到multi-task learning水平就是很厉害了。

方法一:Selective Synaptic Plasticity

在下一个task训练的时候要让模型尽可能少的调整对上一个task重要的parameter

参数bi衡量参数对上一个任务的重要性,可以通过调整一下θbi看看上一个task的loss变化大还是小来确定(bi是超参数,人为预先设定,task2 train的时候是不变的)

方法二:Gradient Episodic Memory (GEM)

保存上一个task的少量训练资料,以在新的task每次调整梯度的时候都可以回头算一下上一个task此时的梯度,然后将新旧梯度结合(新梯度为主,这种方法有点像作弊,直接就在进行multi-task learning了,但是区别是它只用上一个task一点点资料来计算个梯度)

相关推荐
Zzz 小生几秒前
LangChain Streaming-Overview:流式处理使用完全指南
人工智能·python·语言模型·langchain·github
shadowcz0072 分钟前
刚刚,谷歌发布了Gemini 3.1 Pro,同时Google AI Studio也已经支持全栈应用开发。
人工智能
Dev7z1 小时前
基于LSTM神经网络的共享单车需求预测系统设计与实现
人工智能·神经网络·lstm
Open Source Thoughts1 小时前
OpenClaw.ai:Agentic AI 时代的“SpringFramework”时刻
java·人工智能·spring·prompt·开源软件·agi·ai-native
Loo国昌1 小时前
【AI应用开发实战】 03_LangGraph运行时与状态图编排:从直接执行到图编排的演进之路
人工智能·后端·python·自然语言处理·prompt
njsgcs1 小时前
ollama 报错dial tcp ipv6:443: connectex: A connection attempt failed because 解决办法
人工智能
眼镜哥(with glasses)2 小时前
0215笔记-语言模型,提问范式与 Token
人工智能·笔记·语言模型
AIMarketing2 小时前
2026年Q1光引GEO 2.0技术原理解析
人工智能
狮子座明仔2 小时前
体验式强化学习:让模型学会“吃一堑长一智“
人工智能·深度学习·自然语言处理
冬奇Lab3 小时前
一天一个开源项目(第30篇):banana-slides - 基于 nano banana pro 的原生 AI PPT 生成应用
人工智能·开源·aigc