NLP入门

NLP入门+文本预处理

什么是自然语言处理?

让计算机去理解人类语言

认识文本预处理

文本预处理及作用

前提:之前用pandas等进行数据分析,也属于文本预处理的范围

文本预处理作用:将文本转换成模型能够识别的形式,进而实现模型的训练

文本预处理的基本方法:

分词:

分词的意义:

一般实现模型训练的时候,模型接受的文本基本最小单位是词语,因此我们需要对文本进行分词

词语是语意理解的基本单元

英文具有天然的空格分隔符,而中文分词的目的:寻找一个合适的分词边界,进行准确分词

常用分词工具:

jieba分词工具

精确模式:就是按照人类擅长的表达词汇的习惯来分词

全模式分词:将尽可能成词的词汇分割出来

搜索引擎模式:

在精确模式分词的基础上,将长粒度的词再次切分

支持中文繁体分词

支持用户自定义词典

词典的意义:

可以根据自定义词典,修改jieba分词方式,优先考虑词典里面的词来切分

格式:词语 词频(可省略) 词性(可省略)

命名实体识别(NER)

定义:

命名实体:通常指: 人名,地名,机构名等专有名词

NER:从一段文本中识别出上述描述的命名实体

实现方式:

模型训练(后续项目)

词性标注

定义:

对每个词语进行词性的标注: 动词,名词,形容词等

文本张量的表示方式

文本张量表示

意义:将文本转换为向量(数字)的形式,使得模型能够识别进而实现训练,一般是进行词向量的表示实现的方式:

one-hot

word2Vec

wordEmbedding

One-Hot 词向量表示

定义:针对每一个词汇,都会用一个向量表示,向量的长度是n,n代表去重 之后的词汇总量,而且向量只有0,和1两种数字

俗称:独热编码,01编码

ONe-Hot编码的缺点

割裂了词与词之间的联系

如果n过大,会导致占用大量的内存(维度爆炸)

Word2Vec模型

Word2Vec是一种无监督训练方法,本质是训练一个模型,将模型的参数矩阵当作所有词汇的词向量表示

两种训练方式: cbow,skipgram

CBOW介绍

给一段文本,选择一定的窗口,然后利用上下文预测中间目标值

相关推荐
合作小小程序员小小店1 天前
web网页,在线%抖音,舆情,线性回归%分析系统demo,基于python+web+echart+nlp+线性回归,训练,数据库mysql
python·自然语言处理·回归·nlp·线性回归
斯文~3 天前
【AI论文速递】SymAgent:知识图谱复杂推理的agent框架
人工智能·深度学习·llm·nlp·知识图谱
AI大模型学徒4 天前
NLP基础(九)_N-gram模型
人工智能·自然语言处理·nlp·n-gram
AI大模型学徒5 天前
NLP基础(八)_马尔可夫模型
算法·机器学习·自然语言处理·nlp·概率论·马尔可夫模型
lusasky6 天前
大模型混合多语言理解的原理
人工智能·神经网络·机器学习·nlp
老鱼说AI6 天前
BPE编码从零开始实现pytorch
开发语言·人工智能·python·机器学习·chatgpt·nlp·gpt-3
AI人工智能+7 天前
文档抽取技术:通过OCR、NLP和机器学习技术,将非结构化的合同、发票等文档转化为结构化数据
人工智能·计算机视觉·nlp·ocr·文档抽取
AI人工智能+12 天前
从“海量文书”到“精准数据”:文档智能抽取重塑车险核心竞争力
nlp·ocr·文档抽取
AI大模型学徒14 天前
NLP基础(一)_简介
自然语言处理·nlp
PKNLP15 天前
17.模型微调——微调数据集构建
微调·nlp