NLP入门

NLP入门+文本预处理

什么是自然语言处理?

让计算机去理解人类语言

认识文本预处理

文本预处理及作用

前提:之前用pandas等进行数据分析,也属于文本预处理的范围

文本预处理作用:将文本转换成模型能够识别的形式,进而实现模型的训练

文本预处理的基本方法:

分词:

分词的意义:

一般实现模型训练的时候,模型接受的文本基本最小单位是词语,因此我们需要对文本进行分词

词语是语意理解的基本单元

英文具有天然的空格分隔符,而中文分词的目的:寻找一个合适的分词边界,进行准确分词

常用分词工具:

jieba分词工具

精确模式:就是按照人类擅长的表达词汇的习惯来分词

全模式分词:将尽可能成词的词汇分割出来

搜索引擎模式:

在精确模式分词的基础上,将长粒度的词再次切分

支持中文繁体分词

支持用户自定义词典

词典的意义:

可以根据自定义词典,修改jieba分词方式,优先考虑词典里面的词来切分

格式:词语 词频(可省略) 词性(可省略)

命名实体识别(NER)

定义:

命名实体:通常指: 人名,地名,机构名等专有名词

NER:从一段文本中识别出上述描述的命名实体

实现方式:

模型训练(后续项目)

词性标注

定义:

对每个词语进行词性的标注: 动词,名词,形容词等

文本张量的表示方式

文本张量表示

意义:将文本转换为向量(数字)的形式,使得模型能够识别进而实现训练,一般是进行词向量的表示实现的方式:

one-hot

word2Vec

wordEmbedding

One-Hot 词向量表示

定义:针对每一个词汇,都会用一个向量表示,向量的长度是n,n代表去重 之后的词汇总量,而且向量只有0,和1两种数字

俗称:独热编码,01编码

ONe-Hot编码的缺点

割裂了词与词之间的联系

如果n过大,会导致占用大量的内存(维度爆炸)

Word2Vec模型

Word2Vec是一种无监督训练方法,本质是训练一个模型,将模型的参数矩阵当作所有词汇的词向量表示

两种训练方式: cbow,skipgram

CBOW介绍

给一段文本,选择一定的窗口,然后利用上下文预测中间目标值

相关推荐
靴子学长12 小时前
基于字节大模型的论文翻译(含免费源码)
人工智能·深度学习·nlp
weixin_404551245 天前
HUGGINGFACE NLP- MAIN NLP TASKS
人工智能·自然语言处理·nlp·huggingface·tasks
宝贝儿好5 天前
【NLP】第六章:位置编码Positional Encoding
人工智能·深度学习·机器学习·自然语言处理·nlp
goomind6 天前
GPT核心原理
人工智能·gpt·深度学习·nlp
♢.*6 天前
自动驾驶2022-2024年论文汇总与解析
论文阅读·人工智能·计算机视觉·nlp·自动驾驶
Illusionna.7 天前
Word2Vec 模型 PyTorch 实现并复现论文中的数据集
人工智能·pytorch·算法·自然语言处理·nlp·matplotlib·word2vec
weixin_404551248 天前
huggingface NLP-微调一个预训练模型
人工智能·自然语言处理·微调·nlp·huggingface·fine-train
青松@FasterAI11 天前
【NLP高频面题 - 词嵌入篇】为什么说Word2vec的词向量是静态的?
人工智能·深度学习·自然语言处理·nlp
通信仿真实验室12 天前
Google BERT入门(5)Transformer通过位置编码学习位置
人工智能·深度学习·神经网络·自然语言处理·nlp·bert·transformer
Easy数模12 天前
经典NLP案例 | 推文评论情绪分析:从数据预处理到模型构建的全面指南
人工智能·自然语言处理·nlp