NLP入门

NLP入门+文本预处理

什么是自然语言处理?

让计算机去理解人类语言

认识文本预处理

文本预处理及作用

前提:之前用pandas等进行数据分析,也属于文本预处理的范围

文本预处理作用:将文本转换成模型能够识别的形式,进而实现模型的训练

文本预处理的基本方法:

分词:

分词的意义:

一般实现模型训练的时候,模型接受的文本基本最小单位是词语,因此我们需要对文本进行分词

词语是语意理解的基本单元

英文具有天然的空格分隔符,而中文分词的目的:寻找一个合适的分词边界,进行准确分词

常用分词工具:

jieba分词工具

精确模式:就是按照人类擅长的表达词汇的习惯来分词

全模式分词:将尽可能成词的词汇分割出来

搜索引擎模式:

在精确模式分词的基础上,将长粒度的词再次切分

支持中文繁体分词

支持用户自定义词典

词典的意义:

可以根据自定义词典,修改jieba分词方式,优先考虑词典里面的词来切分

格式:词语 词频(可省略) 词性(可省略)

命名实体识别(NER)

定义:

命名实体:通常指: 人名,地名,机构名等专有名词

NER:从一段文本中识别出上述描述的命名实体

实现方式:

模型训练(后续项目)

词性标注

定义:

对每个词语进行词性的标注: 动词,名词,形容词等

文本张量的表示方式

文本张量表示

意义:将文本转换为向量(数字)的形式,使得模型能够识别进而实现训练,一般是进行词向量的表示实现的方式:

one-hot

word2Vec

wordEmbedding

One-Hot 词向量表示

定义:针对每一个词汇,都会用一个向量表示,向量的长度是n,n代表去重 之后的词汇总量,而且向量只有0,和1两种数字

俗称:独热编码,01编码

ONe-Hot编码的缺点

割裂了词与词之间的联系

如果n过大,会导致占用大量的内存(维度爆炸)

Word2Vec模型

Word2Vec是一种无监督训练方法,本质是训练一个模型,将模型的参数矩阵当作所有词汇的词向量表示

两种训练方式: cbow,skipgram

CBOW介绍

给一段文本,选择一定的窗口,然后利用上下文预测中间目标值

相关推荐
MARS_AI_10 小时前
智能呼叫系统中的NLP意图理解:核心技术解析与实战
人工智能·自然语言处理·nlp·交互·信息与通信
江小皮不皮4 天前
为何选择MCP?自建流程与Anthropic MCP的对比分析
人工智能·llm·nlp·aigc·sse·mcp·fastmcp
zeroporn4 天前
在Mac M1/M2上使用Hugging Face Transformers进行中文文本分类(完整指南)
macos·分类·数据挖掘·nlp·transformer·预训练模型·文本分类
老朋友此林6 天前
MiniMind:3块钱成本 + 2小时!训练自己的0.02B的大模型。minimind源码解读、MOE架构
人工智能·python·nlp
老马啸西风6 天前
sensitive-word-admin v2.0.0 全新 ui 版本发布!vue+前后端分离
vue.js·ui·ai·nlp·github·word
Alfred king10 天前
华为昇腾910B通过vllm部署InternVL3-8B教程
llm·nlp·vllm部署
io_T_T11 天前
(NLP)关键词提取之——TF-IDF解析
python·nlp
John15915114 天前
#Paper Reading# DeepSeek-R1
gpt·llm·nlp·deepseek
老马啸西风15 天前
敏感词 v0.25.0 新特性之 wordCheck 策略支持用户自定义
人工智能·ai·nlp·中文分词·openai·deepseek·mcp
崔高杰19 天前
On the Biology of a Large Language Model——Claude团队的模型理解文章【论文阅读笔记】其二——数学计算部分
论文阅读·人工智能·笔记·语言模型·nlp